青岛发电厂PI实时生产信息系统采用Server/Client分布式结构,即在厂信息中心设置一台PI实时数据库服务器,该服务器负责集成所有装置控制系统的生产数据,接口机分布在各装置控制室现场,厂长、总工、科室和车间管理人员通过PI实时数据库来了解现场装置的生产情况,在与局域网相连的每个用户的PC机上安装PI客户端软件来浏览PI服务器中的生产数据。 【青岛发电厂PI实时生产信息系统】是一个基于Server/Client架构的电力行业生产数据管理系统,旨在实时集成和展示各个装置控制系统的生产数据。该系统的核心是PI实时数据库服务器,部署在厂信息中心,负责汇总所有装置的数据。接口机设在各个控制室,确保数据的即时传输。管理层和其他相关人员可以通过PI客户端软件在各自的PC上查看实时生产信息,实现数据同步,几乎无延迟。 系统采用双机Cluster结构,由两台RS6000/F80和RS6000/F50服务器组成,它们共享一个磁盘阵列,具有高可用性和容错性。操作系统为IBM AIX,配合IBM HACMP双机软件,确保服务在任何一台服务器出现故障时能自动切换到备用服务器,保持业务连续性。PI实时数据库和Sybase关系数据库文件位于共享存储上,仅需一次安装即可在两台服务器之间切换运行。 网络基础设施是千兆以太网,满足大数据量实时传输的需求,使得厂内及远程(如济南总部)的数据访问变得便捷。PI实时数据库目前整合了1#和2#发电机组的生产数据、关口表电量数据及状态监测数据,设有10G的数据存储空间,包含9000个测点Tag。 在通信接口技术方面,系统与Westhouse WDPF控制系统对接,通过两台PC作为接口机,确保控制网与管理网的安全隔离。WDPF工程师站上的数据发送程序持续运行,通过UDP/IP数据包将实时数据广播到接口机,接口软件使用Microsoft Visual C++6.0和OSI PI-API开发,具备高安全性、高性能和稳定性,避免了控制系统的安全风险和管理网的广播风暴影响。 总体而言,青岛发电厂的PI实时生产信息系统实现了高效、安全的数据采集、整合和展示,为电厂的运营决策提供了有力支持,并确保了在各种情况下数据服务的可靠性。
2024-11-23 16:34:12 333KB
1
随着电网接入的风机容量越来越大,电网对风力发电系统提出了严格的要求,其中包括低电压穿越的要求。而对于永磁直驱风力发电系统,在电网电压跌落时,直流侧电压的控制是其实现低电压穿越的关键。本文在基于机侧变流器稳定直流侧电压,网侧变流器控制最大输出功率的控制结构上,通过在机侧控制中引入网侧功率前馈,改善对直流侧电压的控制。在系统简化数学模型的基础上,对直流侧电压在风速波动和电网电压跌落时的响应进行了小信号分析,分析表明直流侧电压会存在较大波动,引入网侧功率前馈能够明显改善直流侧电压的响应。通过仿真验证了所提方法的有效性,结果表明网侧功率前馈能够抑制直流侧电压在风速变化时的波动和电网电压跌落时的上升。 永磁直驱风力发电系统在现代电力网络中扮演着重要的角色,因其高效、可靠而备受青睐。然而,随着接入的风力发电机容量不断增加,电网对这类系统的性能要求也越来越高,尤其是在低电压穿越(Low Voltage Ride Through, LVRT)方面。低电压穿越是指在电网电压发生异常时,风力发电系统仍能保持并网运行的能力,这是确保电网稳定性不可或缺的一环。 对于永磁直驱风力发电系统,其关键在于直流侧电压的精确控制。在电网电压下降时,如果直流侧电压控制不当,可能导致系统无法满足LVRT要求。传统的控制策略通常包括机侧变流器稳定直流侧电压,而网侧变流器则负责追踪最大功率输出。然而,这种结构可能导致直流侧电压的不稳定,特别是在风速变化和电网电压跌落的情况下。 为了改善这种情况,本文提出了一种创新方法,即在机侧变流器的控制中引入网侧功率前馈。这种方法旨在通过实时获取网侧功率信息,提前调整机侧变流器的行为,以更好地匹配网侧功率的变化,从而减少直流侧电压的波动。通过对系统进行简化的数学建模和小信号分析,研究发现直流侧电压在风速波动和电网电压跌落时会出现显著的波动。通过引入网侧功率前馈,可以有效地抑制这些波动,提高系统的电压稳定性。 具体来说,系统模型包括风机机械传动链、永磁同步发电机和全功率变流器(分为机侧和网侧)。机侧变流器采用转子磁场定向矢量控制,通过控制永磁电机的电流来产生转矩,进而捕捉风能。网侧变流器则负责将直流侧的能量转换为交流电注入电网。直流侧电压的稳定性直接影响整个系统的运行,因此控制策略的核心是确保机侧和网侧功率的平衡。 小信号分析揭示了在电网电压跌落时,由于网侧功率的瞬间变化,导致直流侧功率失衡,进而影响电压稳定。而加入网侧功率前馈可以提升机侧变流器的响应速度,使其能够更快地适应网侧功率的波动,从而降低直流侧电压的波动。 仿真结果进一步证实了这种方法的有效性,表明网侧功率前馈能够显著抑制直流侧电压在风速变化时的不稳定性,并在电网电压跌落后防止电压的过快上升。这种改进的控制策略不仅有助于提高永磁直驱风力发电系统的LVRT能力,还为未来风力发电技术的发展提供了新的思路。 总结来说,本文提出了一种针对永磁直驱风力发电系统的直流侧电压控制优化策略,通过引入网侧功率前馈,提升了系统的电压稳定性,尤其是在电网电压波动和风速变化的复杂环境下。这一方法有望进一步提升风力发电系统的整体性能,增强其在电网中的兼容性和可靠性。
2024-10-14 21:58:15 66KB
1
这篇论文主要讨论的是2009年电子设计竞赛A题——光伏并网发电模拟装置的设计。该装置采用了当今流行的SPWM(脉宽调制)技术,由两片低端AVR单片机构建的主从控系统来实现。该系统不仅能够高效地进行DC/AC转换,还能够通过MPPT(最大功率点跟踪)算法精确追踪最大功率点,以优化能量输出。同时,装置具备频率和相位跟踪功能,并设有过流、欠压、过热三种保护措施,确保系统的稳定运行。 在方案选择上,首先考虑了使用频率调节芯片SA8382或SA8281直接产生SPWM波,但因其高昂的价格和较低的性价比而被否决。接着,研究了利用NE555产生的三角波与单片机通过D/A转换产生的正弦波,通过比较器TLV3501生成SPWM波,尽管这种方法成本较低,但控制难度大,实现起来较为复杂。最终,论文选择了使用AVR单片机megal6的定时器和比较匹配机制来产生SPWM波,这种方法能产生高频且高精度的SPWM波,且数字控制更加灵活,干扰小。为了兼顾控制和SPWM生成,采用两片megal6构成主从控制结构。 在MPPT(最大功率点跟踪)控制方法上,一种方案是通过软件调控SPWM波的调制比,改变负载电压和电流,以达到转换器的分压目标。另一种方案是在DC/AC转换前级使用TL494为核心的DC-DC升压模块,实现硬件自动反馈调节,达到稳压目的,这种方法减少了单片机的压力,提高了系统的稳定性。 对于同频同相的测量控制,方案一是利用A/D连续采样参考波形和反馈波形,计算频率并通过单片机调节SPWM来同步波形。这个方法对A/D转换器性能要求较高,需要处理大量数据。另一种方案是将参考信号通过比较器整流为方波,通过单片机控制调整SPWM的相位,简化了实现过程。 该论文涉及的主要知识点包括: 1. SPWM调制技术:通过改变脉冲宽度来调节输出电压的平均值,实现交流电的模拟。 2. AVR单片机的应用:在光伏并网发电模拟装置中的主从控制设计,以及SPWM波的生成。 3. MPPT算法:用于追踪太阳能电池的最大功率点,提高能量转换效率。 4. 系统保护机制:过流、欠压、过热保护,保证设备安全稳定运行。 5. 频率和相位跟踪:确保并网发电模拟装置与电网的同步。 6. 方案比较与选择:考虑性价比、控制难度、系统稳定性等因素。 这篇论文为电子设计竞赛提供了有价值的参考和指导,展示了如何利用低成本组件设计出高性能的光伏并网发电模拟装置。
2024-09-24 13:10:13 382KB 电子设计竞赛 2009
1
智能电网技术是现代电力系统发展的核心方向之一,它涉及将先进的信息技术、通信技术、控制技术和电力技术融合到传统的电网中,以实现电网的智能化管理和运行。智能电网的目标是提升电网的可靠性、安全性、经济性和环境友好性,特别是在多种能源发电、调度以及高效利用方面发挥着越来越重要的作用。 1. 多种能源发电的多目标优化调度模型 在智能电网中,多种能源发电的多目标优化调度模型是核心内容。所谓多目标优化,指的是在考虑多个目标函数的同时,寻求这些目标之间的最优平衡。在电力系统中,这些目标可能包括但不限于最小化火电机组的煤耗、水电机组的用水量、电网的网损以及降低风电场的危险等级等。通过构建这种模型,可以全面评估发电资源的使用效率和系统的经济性,从而在保证电力供应可靠性的基础上,实现能源的高效利用和环境保护。 2. 仿水循环粒子群算法 为了有效解决多目标优化调度模型的复杂性和求解难度,本文提出了一种仿水循环粒子群算法。这是一种启发式算法,借鉴了自然界水循环机制,其目的是为了解决传统随机算法在面对复杂优化问题时耗时长和难以收敛到全局最优解的问题。仿水循环粒子群算法利用了水循环过程中的一些现象,如蒸发、降水、径流等,将这些现象转化为算法中的粒子运动规则,通过模仿水循环的方式迭代搜索最优解。 3. 风电机组出力的不确定模型 在智能电网的多种能源发电中,风能作为一种重要的可再生能源,其发电量受到风速随机性的影响,导致风电机组的出力具有不确定性。因此,本文采用了随机机会约束规划理论,建立了一个能够描述风速随机分布特性的风电机组出力不确定模型。该模型通过机会约束规划将不确定性转化为确定性等价形式,使得调度模型能够更加准确地反映实际情况。 4. 案例分析与验证 为验证所提出的多目标优化调度模型和仿水循环粒子群算法的实用性与有效性,研究以一个包含10个燃煤电厂、8个水电站和2个风电场的区域电力系统作为实例进行分析计算。通过计算结果,可以分析模型对电网的适应性,并评估仿水循环粒子群算法在求解多目标优化问题中的可行性与效率。 关键词解释: - 智能电网:指采用先进的信息通信技术与传统电网相结合,实现电网的智能化管理,包括发电、输电、变电、配电、用电和调度等环节。 - 多种能源发电:指在一个电力系统中同时或相继使用不同类型的发电方式,包括火电、水电、风电等。 - 多目标优化调度:是针对电力系统中的多个相互冲突的优化目标,同时进行优化以寻求各个目标之间的最佳平衡点。 - 仿水循环粒子群算法:一种基于自然水循环现象的新型优化算法,用于解决多目标优化问题。 本文介绍的智能电网多种能源发电多目标优化调度模型及其仿水循环粒子群算法,不仅在理论上构建了一个高效、节能、环保的电力调度模型,而且提出了一种高效的算法来解决实际问题,具有很高的实用价值和研究意义。随着智能电网技术的不断发展和优化算法的不断创新,这些研究成果将对提升智能电网的性能和推动可再生能源的利用起到积极的作用。
2024-09-21 13:01:54 533KB 首发论文
1
"新能源柔性并网控制-专题虚拟同步发电机控制-东北电力大学" 本篇资源摘要主要介绍了虚拟同步发电机(Virtual Synchronous Generator,VSG)控制技术在新能源柔性并网控制中的应用。VSG 是一种新型的电力电子设备,通过模拟传统同步发电机的特性,提供类似同步发电机的功能,具有自主提供频率控制、自主无功电压控制、虚拟惯性支撑、阻尼控制、自同步等功能。 VSG 背景及发展历史 虚拟同步发电机控制技术的提出最早可以追溯到1997年,IEEE task force 工作组提出了静止同步机(Static Synchronous Generator, SSG)的概念。随后,2007年德国的 Beck 教授率提出 VISMA(Virtual Synchronous Machine)概念;2008年,欧洲联合项目“VSYNC”提出VSG的概念(电压源VSG);2009年,钟庆昌教授提出“Synchronverter”概念(含励磁模拟的电压源VSG)。2012年,美国 Hussam Alatrash 将VSG引入光伏逆变器(光储结构)。2013~2016年,南瑞、许继先后研发虚拟同步样机;张北建成最大VSG示范基地。 VSG 控制概述 VSG 控制技术的核心是通过变流器控制环节中模拟同步机的运行机制,使新能源发电设备具备主动支撑电网能力,由“被动调节”转为“主动支撑”。VSG 控制方法可以分为电压型VSG 和电流型VSG 两种。电压型VSG 控制方法可以模拟机械方程、定子电压方程和定子感应电动势方程,实现有功和无功的无差别控制。 VSG 应用场景 VSG 控制技术可以应用于储能VSG、分布式性新能源发电VSG(风电VSG、光伏VSG)、负荷VSG(电动汽车负荷、空调负荷等可控负荷)、柔性直流换流站VSG控制、全自主电力系统VSG协同研究趋势等领域。 VSG控制方法 典型VSG控制方法包括电压型VSG-虚拟频率惯性方法(二阶)、电压型VSG-synchronverter 方案(5阶)等。这些方法可以模拟同步发电机的特性,提供类似同步发电机的功能。 VSG仿真结果 通过仿真结果可以看到,VSG 控制技术可以实现有功和无功的无差别控制,具有良好的暂态特性和稳定性。 VSG 控制技术在新能源柔性并网控制中的应用具有广阔的前景和发展空间,对于改进电网稳定性和可靠性具有重要意义。
2024-09-01 15:13:50 2.56MB
1
针对传统的双dq、PI调节器控制策略在不对称跌落下所带来的延时问题,提出了一种基于PR调节器的控制策略:采用功率闭环得到转子侧变换器所需的正序电流给定量,通过抑制电磁转矩二倍频来计算负序电流给定量。Matlab/Simulink仿真结果表明,基于PR调节器的控制策略很好地解决了延时问题,且与双dq、PI调节器控制策略相比,控制性能更优。
1
太阳能光伏并网发电及其逆变控制_(新能源与微电网技术),太阳能是太阳内部连续不断的核聚变反应过程产生的能量。 地球轨道上的平均 太阳辐射强度为 1367kW/ m 2 。 地球赤道的周长为 40000km, 从而可计算出, 地球 获得的能量可达 173000TW。 太阳能在海平面上的标准峰值强度为 1kW/ m 2 , 地球 表面某一点 24h 的年平均辐射强度为 0. 20kW/ m 2 , 相当于有 102000TW 的能量, 人 类依赖这些能量维持生存。 太阳是一个巨大、 久远、 无尽的能源。 尽管太阳辐射到 地球大气层的能量仅为其总辐射能量 (约为 3. 75×10 26W) 的 22 亿分之一, 但已 高达 173000TW, 也就是说太阳每秒钟照射到地球上的能量就相当于 500 万 t 煤燃 烧释放的能量。 地球上的风能、 水能、 海洋温差能、 波浪能和生物质能以及部分潮 汐能都是来源于太阳; 即使是地球上的化石燃料 (如煤、 石油、 天然气等) 从根 本上说也是远古以来储存下来的太阳能, 所以广义的太阳能所包括的范围非常大, 狭义的太阳能则限于太阳辐射能的光热、 光电和光 ### 太阳能光伏并网发电及其逆变控制 #### 一、太阳能资源概述 太阳能是一种清洁、可再生的能源,其来源是太阳内部的核聚变反应所产生的能量。太阳辐射到地球的能量巨大且持久,根据地球轨道上的平均太阳辐射强度(约1367kW/m²)和地球赤道周长(约40000km),可以计算出地球每年接收到的能量约为173000TW。即使考虑到大气层的吸收和散射等因素,地表某一点24小时的年平均辐射强度仍有0.20kW/m²,即每年大约有102000TW的能量可供人类使用。 地球上的许多能源形式实际上都可以追溯到太阳能,例如风能、水能、海洋温差能、波浪能以及生物质能等。此外,化石燃料(如煤、石油、天然气)本质上也是远古时期植物和动物生命体储存的太阳能。 #### 二、光伏并网发电系统原理 光伏并网发电系统是指将太阳能光伏板产生的直流电转换为交流电后,接入公共电网的一种发电方式。这一过程中关键的技术之一是逆变控制技术,即如何高效、稳定地将直流电转化为符合电网要求的交流电。 **光伏并网发电系统的主要组成部分包括:** 1. **太阳电池板**:将太阳光转化为直流电。 2. **光伏逆变器**:将直流电转换为与电网相匹配的交流电。 3. **最大功率点跟踪技术(MPPT)**:确保光伏板始终工作在其最大功率点附近,提高能量转换效率。 4. **孤岛检测与防止技术**:防止电网故障时,光伏系统独立运行可能对维修人员造成的危险。 5. **低电压穿越技术**:保证系统在电网电压骤降时仍能保持稳定运行。 #### 三、光伏逆变器的关键技术 光伏逆变器是光伏并网发电系统的核心部件,它不仅需要将直流电转换为交流电,还需要保证输出的电能质量满足电网的要求。为此,逆变器的设计需要考虑以下关键技术: 1. **电路拓扑**:选择合适的电路结构对于提高逆变器的转换效率至关重要。 2. **控制策略**:包括基本的PWM控制、载波同步调制、空间矢量调制等,不同的控制方法会影响到逆变器的性能指标。 3. **最大功率点跟踪技术**:通过对光伏阵列输出特性的实时监测和调整,确保逆变器始终工作在最优状态下。 4. **并网标准遵循**:逆变器需要满足当地的电网接入标准,比如电压、频率等参数的要求。 #### 四、碳化硅MOS与碳化硅模块的应用 随着碳化硅(SiC)等新型半导体材料的发展,基于碳化硅的MOSFET和模块因其优异的性能被广泛应用于光伏逆变器中。相较于传统的硅基器件,碳化硅器件具有以下优势: 1. **高耐压能力**:能够承受更高的电压,适用于高压系统。 2. **低导通损耗**:在相同电压等级下,导通电阻更低,损耗更小。 3. **高频操作**:支持更高的开关频率,有助于减小外部滤波器的体积和重量。 4. **高温稳定性**:能够在较高的温度下稳定工作,扩大了逆变器的应用场景。 《太阳能光伏并网发电及其逆变控制》这本书全面覆盖了太阳能光伏发电的基础理论和技术实践,从太阳电池技术到光伏并网逆变器的电路拓扑、控制策略等方面进行了深入探讨。对于希望深入了解光伏并网发电技术的读者来说,本书是一份宝贵的参考资料。
2024-08-16 11:06:14 77.82MB 光伏逆变
1
根据提供的文件信息,本文将详细解析“发电系统Simulink仿真模型变速恒频风力发电系统Simulink仿真模型”的核心知识点。 ### 一、Simulink仿真模型概述 Simulink是MATLAB的一个附加产品,它提供了一个图形化的用户界面来创建动态系统的模型,并通过该模型进行仿真和分析。Simulink特别适用于线性和非线性动力学系统的建模与仿真,广泛应用于控制工程、电气工程、机械工程等多个领域。 ### 二、变速恒频风力发电系统的概念 变速恒频(Variable Speed Constant Frequency, VSCF)风力发电系统是一种先进的风力发电技术,其核心优势在于能够在不同的风速下保持发电机输出频率的稳定。这主要通过采用电力电子变换器来实现对发电机转速的灵活控制,从而提高风能转换效率并降低对电网的影响。 #### 2.1 风力发电原理 风力发电的基本原理是利用风轮捕获风能并将其转化为机械能,再通过发电机将机械能转换为电能。在变速恒频风力发电系统中,通过调节发电机的转速来最大化风能的捕获效率。 #### 2.2 变速恒频系统特点 - **高效率**:能够适应不同风速条件下的最优运行状态。 - **低损耗**:减少了机械损耗,提高了整体系统的可靠性。 - **易于并网**:由于输出频率稳定,更容易与电网同步运行。 - **灵活控制**:可以通过调整控制策略优化能量转换过程。 ### 三、Simulink中的变速恒频风力发电系统建模 在Simulink中构建变速恒频风力发电系统的仿真模型通常包括以下几个关键部分: #### 3.1 风速模型 用于模拟实际风速的变化情况,可以是恒定风速、随机变化风速或者根据具体应用场景设定的其他风速模型。 #### 3.2 风轮模型 模拟风轮捕获风能并将其转化为机械能的过程。这一步骤通常涉及到风轮特性曲线的建立以及风速与输出功率之间的关系。 #### 3.3 发电机模型 选择合适的发电机类型(如异步发电机、永磁同步发电机等),并建立相应的数学模型。这一步骤对于实现变速恒频非常重要。 #### 3.4 控制系统设计 设计电力电子变换器的控制策略,如最大功率追踪(Maximum Power Point Tracking, MPPT)、矢量控制(Vector Control)等,以确保发电机能够在不同风速条件下高效运行。 #### 3.5 电力电子变换器模型 建立电力电子变换器的模型,实现从发电机到电网的能量转换。这部分是实现变速恒频的关键。 ### 四、模型验证与分析 完成模型构建后,还需要通过一系列的仿真试验来验证模型的有效性,并对系统的性能进行评估。这包括但不限于稳定性分析、动态响应测试、效率评估等。 ### 五、总结 通过Simulink仿真工具,可以有效地模拟和分析变速恒频风力发电系统的运行特性,这对于优化系统设计、提高风能利用率具有重要意义。同时,Simulink提供了强大的图形化界面和丰富的模块库,使得复杂系统的建模变得更加直观和便捷。 以上是对“发电系统Simulink仿真模型变速恒频风力发电系统Simulink仿真模型”的详细介绍。希望这些信息能够帮助读者更好地理解和应用这一领域的知识。
2024-08-15 19:21:23 87B
1
"太阳能光热发电控制技术研究" 太阳能光热发电控制技术是一种新能源家族中的代表能源,广泛应用于各个领域。太阳能光热发电控制技术的研究旨在提高太阳能光热发电的效率和稳定性,解决环境污染和资源浪费问题。 1. 太阳能简介 太阳能是太阳内部连续不断的核聚变反应过程产生的能量,是各种可再生能源中最重要的基本能源,也是人类可利用的最丰富的能源。太阳每年投射到地面上的辐射能高达1.05×1018千瓦时,相当于1.3×106亿吨标准煤,大约为全世界目前一年能耗的一万多倍。 2. 太阳能光热发电 太阳能光热发电是将阳光聚合,并运用其能量产生热水、蒸汽和电力。集热式太阳能(Solar Thermal)原理是将镜子反射的太阳光,聚焦在一条叫接收器的玻璃管上,而该中空的玻璃管可以让油流过。从镜子反射的太阳光会令管子内的油升温,产生蒸气,再由蒸气推动轮机发电。 3. 太阳能光热发电控制技术 太阳能光热发电控制技术是太阳能光热发电系统的核心部分,旨在提高太阳能光热发电的效率和稳定性。太阳能光热发电控制技术包括太阳能光热发电控制系统、太阳能光热发电系统电站运行方式等。 太阳能光热发电控制系统主要包括机组控制系统、热工保护项目、顺序控制回路、发电机冷却系统、润滑系统、励磁系统等。太阳能光热发电控制系统的主要目标之一是使机组参数运行在合理范围之内,不发生超温超压、跳机等故障。 太阳能光热发电系统电站运行方式包括普通清晨启动、冷启动、热启动、正常运行、云遮运行等。普通清晨启动是指各区域定日镜处于各自自然朝向位置,并没处在待机状态;冷启动是指吸热器由于热损失影响,启动时的状态参数与周围环境相应,定日镜场在前一次运行之后,处于待机状态;热启动是指某些原因比如辐照、大风等导致吸热器和汽轮机解耦运行时,某些带有隔离门的吸热器,可以保持内部蓄有一定压强和温度的蒸汽;正常运行是指启动完成后,在外界条件没有剧变影响的条件下,全厂处于正常运行状态,全厂的发电功率与辐照变化存在直接关联;云遮运行是指当投射到吸热器表面的辐照强度低于吸热器设计的下限时,全厂处于云遮运行状态。 太阳能光热发电控制技术是解决环境污染和资源浪费问题的重要手段之一,具有广泛的应用前景和发展潜力。
1
这是一套绿色扁平化设计风格的,风力发电新能源PPT模板。第一PPT模板网提供能源行业幻灯片模板免费下载; 关键词:风车发电、风力发电幻灯片模板,绿色清洁新能源PPT模板,绿色扁平化幻灯片图表大全,.PPTX格式;
2024-07-28 12:09:51 1.53MB 国家电网
1