一种改善永磁直驱风力发电系统直流侧电压控制的方法

上传者: 38675341 | 上传时间: 2024-10-14 21:58:15 | 文件大小: 66KB | 文件类型: PDF
随着电网接入的风机容量越来越大,电网对风力发电系统提出了严格的要求,其中包括低电压穿越的要求。而对于永磁直驱风力发电系统,在电网电压跌落时,直流侧电压的控制是其实现低电压穿越的关键。本文在基于机侧变流器稳定直流侧电压,网侧变流器控制最大输出功率的控制结构上,通过在机侧控制中引入网侧功率前馈,改善对直流侧电压的控制。在系统简化数学模型的基础上,对直流侧电压在风速波动和电网电压跌落时的响应进行了小信号分析,分析表明直流侧电压会存在较大波动,引入网侧功率前馈能够明显改善直流侧电压的响应。通过仿真验证了所提方法的有效性,结果表明网侧功率前馈能够抑制直流侧电压在风速变化时的波动和电网电压跌落时的上升。 永磁直驱风力发电系统在现代电力网络中扮演着重要的角色,因其高效、可靠而备受青睐。然而,随着接入的风力发电机容量不断增加,电网对这类系统的性能要求也越来越高,尤其是在低电压穿越(Low Voltage Ride Through, LVRT)方面。低电压穿越是指在电网电压发生异常时,风力发电系统仍能保持并网运行的能力,这是确保电网稳定性不可或缺的一环。 对于永磁直驱风力发电系统,其关键在于直流侧电压的精确控制。在电网电压下降时,如果直流侧电压控制不当,可能导致系统无法满足LVRT要求。传统的控制策略通常包括机侧变流器稳定直流侧电压,而网侧变流器则负责追踪最大功率输出。然而,这种结构可能导致直流侧电压的不稳定,特别是在风速变化和电网电压跌落的情况下。 为了改善这种情况,本文提出了一种创新方法,即在机侧变流器的控制中引入网侧功率前馈。这种方法旨在通过实时获取网侧功率信息,提前调整机侧变流器的行为,以更好地匹配网侧功率的变化,从而减少直流侧电压的波动。通过对系统进行简化的数学建模和小信号分析,研究发现直流侧电压在风速波动和电网电压跌落时会出现显著的波动。通过引入网侧功率前馈,可以有效地抑制这些波动,提高系统的电压稳定性。 具体来说,系统模型包括风机机械传动链、永磁同步发电机和全功率变流器(分为机侧和网侧)。机侧变流器采用转子磁场定向矢量控制,通过控制永磁电机的电流来产生转矩,进而捕捉风能。网侧变流器则负责将直流侧的能量转换为交流电注入电网。直流侧电压的稳定性直接影响整个系统的运行,因此控制策略的核心是确保机侧和网侧功率的平衡。 小信号分析揭示了在电网电压跌落时,由于网侧功率的瞬间变化,导致直流侧功率失衡,进而影响电压稳定。而加入网侧功率前馈可以提升机侧变流器的响应速度,使其能够更快地适应网侧功率的波动,从而降低直流侧电压的波动。 仿真结果进一步证实了这种方法的有效性,表明网侧功率前馈能够显著抑制直流侧电压在风速变化时的不稳定性,并在电网电压跌落后防止电压的过快上升。这种改进的控制策略不仅有助于提高永磁直驱风力发电系统的LVRT能力,还为未来风力发电技术的发展提供了新的思路。 总结来说,本文提出了一种针对永磁直驱风力发电系统的直流侧电压控制优化策略,通过引入网侧功率前馈,提升了系统的电压稳定性,尤其是在电网电压波动和风速变化的复杂环境下。这一方法有望进一步提升风力发电系统的整体性能,增强其在电网中的兼容性和可靠性。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明