盲解卷积是指在不确切了解卷积中使用的脉冲响应函数的情况下对信号进行解卷积。 这通常是通过对输入和/或脉冲响应添加适当的假设来恢复输出来实现的。 我们在这里考虑输入信号的稀疏性或简约性。 它通常用 l0 成本函数来衡量,通常用 l1 范数惩罚来解决。 l1/l2 比率正则化函数在最近的一些工作中显示出检索稀疏信号的良好性能。 事实上,它受益于盲语境中非常理想的尺度不变性。 然而,l1/l2 函数在解决由于在当前恢复方法中使用这种惩罚项而导致的非凸和非光滑最小化问题时会带来一些困难。 在本文中,我们提出了一种基于对 l1/l2 函数的平滑逼近的新惩罚。 此外,我们开发了一种基于近端的算法来解决涉及该函数的变分问题,并推导出理论收敛结果。 我们通过与最近处理精确 l1/l2 项的交替优化策略进行比较,在地震数据盲解卷积的应用中证明了我们的方法的有效性。 SOOT 工具箱(Smooth One-O
2024-05-30 12:43:58 48KB matlab
1
1、本算法为图像反卷积算法,目的为了降低图像噪声、提高图像分辨率。 2、deconvblind文件夹下为工程文件,编译环境为VS2017,效果见“演示视频.mp4”。 3、opencv-4.5.0-vc14_vc15.exe为opencv450安装包,直接安装到配置目录就行。 4、ImageWatch.vsix为图像可视化调试工具,与VS2017相对应,具体用法可网上搜索。 5、visual_studio_community_2017_version_15.3.exe为VS2017线上安装包,具体安装方式可网上搜索。
2023-03-07 22:02:50 284.54MB 图像处理 C++ 反卷积 提升分辨率
1
udeconv - 无监督 Wiener-Hunt 反卷积 xEap = udeconv(data, ir, ...) [xEap, gnChain, gxChain] = udeconv(data, ir, ...) 通过“ir”返回“data”的反卷积。 该算法是一个随机迭代过程(Gibbs 采样器),允许自动调整正则化参数,请参阅下面的参考资料。 维数没有具体限制。 调用 [xEap, gnChain, gxChain, xStd] = udeconv(...) 允许以每次迭代的 fft 成本计算 xEap 周围的协方差矩阵的对角线。 如果您使用这项工作,请在下面添加对参考文献的引用。 与八度兼容。 参数 数据——数据 ir——冲动React 可选 Optionnals 参数的形式为 (..., 'key', val, ...)。 'criterion', val --
2022-11-04 21:00:59 96KB matlab
1
matlab代码影响BD-RPCA 该MATLAB软件包是脚本的集合,允许在论文[1]中生成图形(图1和图2a-2e)。 本文探讨了从超声图像的超快速序列中进行高分辨率多普勒血流估计的问题。 将杂波和血液成分的分离公式化为一个反问题已在文献中显示,它是基于时空奇异值分解(SVD)的杂波滤波的良好替代方法。 特别地,最近已经在这样的问题中嵌入了去卷积步骤,以减轻成像系统的实验测量的点扩展函数(PSF)的影响。 在这种情况下显示去卷积可以提高血流重建的准确性。 但是,测量PSF要求非平凡的实验设置。 为了克服这个限制,我们在这里提出一种盲反卷积方法,该方法能够从多普勒数据中估计血液成分和PSF。 与基于实验测量的PSF的先前方法和其他两种最新方法相比,对模拟和体内数据进行的数值实验从定性和定量方面证明了该方法的有效性。 指示 将包下载为.zip文件(单击上方的绿色代码),然后将其解压缩。 请注意,解压缩的文件夹的名称应为BD-RPCA 。 将MATLAB的当前文件夹设置为此解压缩的文件夹,即BD-RPCA 。 从以下链接下载所有模拟数据:然后将它们放入“数据”文件夹中 运行[1]中与每个图
2022-09-27 18:49:40 8.15MB 系统开源
1
介绍 颜色反卷积算法的设计针对RGB摄像机获取的颜色信息,基于免疫组化技术使用的染色剂RGB分量光的特异性吸收,分别计算每种染色剂对图像的作用效果。免疫组织化学图像处理通常用的染色包括DAB、H&E。 颜色反卷积可应用于H-DAB图像和组织病理学中常用的染色剂(H-E,H AEC,FAST Red,DAB),广泛应用于免疫组化染色图像颜色分离。 环境 #### Language de programmation : Python 2.7 #### Libs : numpy, matplotlib, sikit-learn, PySide, OpenCV2 运行步骤 1.运行ColorDeconvolution.py或者hsd.py,可以生成反卷积后的图像(一共有6个图),依据情况选择结果。 2.得到的HSI_Teinte_t1.png图像,灰度值比较低,在PS里面先用:图像-调整-曲线-自动,增加灰度值,再图像-调整-反相 ———————————————— 版权声明:本文为CSDN博主「可基大萌萌哒的马鹿」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及
2022-08-23 21:05:24 255.53MB 数字病理 深度学习 颜色反卷积 病理图像
1
多对象单细胞反卷积(MuSiC) MuSiC是一种反卷积方法,它利用跨学科的scRNA-seq来估计大量RNA-seq数据中的细胞类型比例。 如何引用MuSiC 请引用以下出版物: 具有多对象单细胞表达参考的大体积组织细胞类型反卷积X.Wang,J.Park,K.Susztak,NRNR Zhang,M.Li 自然通讯。 2019年1月22日 安装 # install devtools if necessary install.packages( ' devtools ' ) # install the MuSiC package devtools :: install_github( ' xuranw/MuSiC ' ) # load library( MuSiC ) 更多信息 请参阅。
2022-07-13 15:18:32 62.98MB statistical-genetics single-cell-rna-seq R
1
一种对高通量基因表达谱中的发光串扰进行反卷积的算法,以恢复微Kong板的真实发光活性。
2022-06-14 20:01:35 5.07MB 开源软件
1
ThreeDeconv.jl是用Julia编写的用于荧光显微镜的 3D 反卷积软件。目前,它支持 Julia v.1.6.0,但在未来的版本中可能不会被支持。如果有兴趣,请随时进行 PR。该算法的详细信息可在我们的论文和我们的网站中找到。虽然反卷积算法与论文中描述的相同,但我们对软件进行了一些改进,同时对 Julia 和相关软件包进行了重大更新。多亏了这次更新,这个包比纸上报告的速度要快得多,并且可以在 5 秒内解卷积 256 x 256 x 57 的图像
2022-06-10 10:03:34 253KB julia 算法
matlab实现维纳滤波盲反卷积迭代算法
2022-06-02 13:08:33 4KB matlab wiener盲反卷积迭代
1
自适应颜色解卷积 (ACD) ============ 这是基于我们论文中描述的自适应颜色反卷积的组织学图像颜色归一化的实现: Yushan Zheng、Zhiguo Jiang、Haopeng Zhang、Fengying Xie、Jun Shi 和 Chenghai Xue,用于组织学 WSI 归一化的自适应颜色反卷积,生物医学中的计算机方法和程序,v170(2019)第 107-120 页。 要求 TensorFlow(1.3 或更高版本) Python 3.6 麻木 1.14.0 opencv-python 3.4.1 引用 如果您在自己的工作中使用此代码,请引用以下论文: @article{zhengCMPB2019, title = {Adaptive color deconvolution for histological WSI normalizat
1