SOOT l1/l2 范数比稀疏盲反卷积:高斯噪声中的稀疏盲反卷积,带有非凸正则化 l1/l2 范数比惩罚-matlab开发

上传者: 38658086 | 上传时间: 2024-05-30 12:43:58 | 文件大小: 48KB | 文件类型: ZIP
盲解卷积是指在不确切了解卷积中使用的脉冲响应函数的情况下对信号进行解卷积。 这通常是通过对输入和/或脉冲响应添加适当的假设来恢复输出来实现的。 我们在这里考虑输入信号的稀疏性或简约性。 它通常用 l0 成本函数来衡量,通常用 l1 范数惩罚来解决。 l1/l2 比率正则化函数在最近的一些工作中显示出检索稀疏信号的良好性能。 事实上,它受益于盲语境中非常理想的尺度不变性。 然而,l1/l2 函数在解决由于在当前恢复方法中使用这种惩罚项而导致的非凸和非光滑最小化问题时会带来一些困难。 在本文中,我们提出了一种基于对 l1/l2 函数的平滑逼近的新惩罚。 此外,我们开发了一种基于近端的算法来解决涉及该函数的变分问题,并推导出理论收敛结果。 我们通过与最近处理精确 l1/l2 项的交替优化策略进行比较,在地震数据盲解卷积的应用中证明了我们的方法的有效性。 SOOT 工具箱(Smooth One-O

文件下载

资源详情

[{"title":"( 2 个子文件 48KB ) SOOT l1/l2 范数比稀疏盲反卷积:高斯噪声中的稀疏盲反卷积,带有非凸正则化 l1/l2 范数比惩罚-matlab开发","children":[{"title":"SOOT-sparse-blind-deconvolution-toolbox.v1.0.mltbx <span style='color:#111;'> 38.50KB </span>","children":null,"spread":false},{"title":"SOOT-sparse-blind-deconvolution-toolbox.v1.0.zip <span style='color:#111;'> 26.64KB </span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明