在进行MATLAB单端反激DC/DC变换器的仿真时,首先需要对电路进行基本参数的设定和计算。本仿真案例中使用的变换器额定功率为50W,输入电压为72V,输出电压为15V。滤波电容C被设置为4.7mF。在选择开关器件时,使用了MOSFET,开关频率则设定为20kHz。变压器变比为72:18,这表示通过变压器将输入电压降低到输出所需的15V。变压器在SimPowerSystems工具箱中选用,并以标幺值制进行参数设置,其额定功率和频率分别为50VA和20kHz。其中,变压器绕组的电压、电阻和电感值被设定为绕组1为72V、0.001Ω和0H,绕组2为18V、0.001Ω和0H,而励磁电阻和电感分别设置为200Ω和20H。 仿真中,首先进行了额定负载条件下的仿真。计算额定负载下的电阻值,公式为R=U^2/P,其中U为输出电压,P为功率。根据公式得到R=15^2/50=4.5Ω。然后调整占空比以达到输出电压稳定在15V。仿真结果表明,当占空比为45%时,输出电压能够稳定。在仿真过程中记录了MOSFET和整流二极管的工作波形。 仿真报告还探讨了如何改善电路的启动特性,减少输出电压超调问题。提出增加电容的大小,以减小电容两端电压的上升速度,从而降低启动过程中的超调。仿真结果显示,电容增倍后输出电压的超调量有明显降低。此外,也可以通过在输出环节加入RLC电路进行调节,以达到改善启动特性的目的。 对于小负载的仿真,负载电阻被设定为200Ω,直流电容的初始电压为14V。仿真中,调整占空比至8%以使输出电压达到15V。在这一条件下,记录了MOSFET和整流二极管的电流与电压波形。仿真结果提供了MOSFET和整流二极管在小负载下的工作状态,这些数据对于评估变换器在不同负载条件下的性能非常重要。 在整个仿真过程中,所有参数和结果的记录对于理解电路的行为和性能至关重要。通过MATLAB仿真,可以有效地分析电路在不同工作条件下的动态特性,并指导实际电路设计的改进。此外,通过调整和优化电路参数,如电容大小和占空比,可以对电路性能进行有效控制,从而实现对变换器性能的优化。
2025-12-15 11:45:54 239KB
1
汇川MD500全C最新版源码解析:核心开放、可移植与二次开发,新增制动电阻检测电路,疑似软件平台升级为ARM,增加专机功能宏和以太网通讯探索。,汇川md500md500e全C最新版源程序,核心全开放,可移植可二次开发,驱动板和380差不多 去年之前的500比380改动不大,增加了制动电阻检测电路去掉过压电路。 其他的基本没变。 最新的MD500我怀疑软件平台改成ARM了,增加了很多专机功能宏和以太网通讯,最新的500机器我也没见过。 ,MD500; MD500E; 核心全开放; 可移植; 二次开发; 驱动板; 制动电阻检测; 专机功能宏; 以太网通讯。,"汇川MD500系列全C版源程序解析:核心开放,可移植二次开发,新增制动电阻检测与以太网通讯"
2025-12-15 11:02:36 1.09MB 开发语言
1
在现代电子工程领域,利用仿真软件进行电路设计已经成为了一种常态。Multisim是一款功能强大的电路仿真软件,它可以进行电路设计、仿真以及分析。在设计压阻式压力传感器电路时,利用Multisim能够模拟实际电路的性能和响应,这对于优化电路设计,降低成本以及缩短研发周期都具有重要意义。 在设计电路之前,需要了解压阻式压力传感器的基本原理。压阻式传感器通常由半导体或金属材料制成,其电阻值会随着受到的压力变化而变化。这一变化可以通过相应的电路进行检测和放大,从而实现压力的测量。 在Multisim中进行电路设计,首先要建立电源单元,为电路提供稳定的工作电压。电源单元的设计需要考虑到电压稳定性和电流供应能力,以保证电路能够正常工作。接着,是压力传感器单元的设计,这一部分是整个电路的核心。在Multisim中,我们可以通过软件自带的模型或者用户自定义模型来模拟实际的压阻式传感器。设计时需考虑传感器的灵敏度、量程以及输出特性。 放大电路单元是将传感器单元的微弱信号放大到可以处理的程度。在设计放大电路时,需要选择合适的放大器类型和参数,如运算放大器的选择、反馈电阻的计算等,以达到最佳的放大效果。此外,滤波电路单元也是必不可少的,因为压力传感器输出的信号往往会含有噪声和干扰,滤波电路的作用就是去除这些不需要的信号成分,保证输出信号的准确性和稳定性。 在设计上述各个单元时,Multisim提供了一系列工具,包括丰富的元件库、电路仿真分析工具、信号源等,这些都大大简化了设计流程,提高了设计的准确性和效率。设计完成后,还可以通过仿真验证电路的实际表现,比如测量电路的响应时间、频率响应特性、温度漂移等参数,进而进行必要的调整和优化。 除了电路设计外,Multisim还支持对电路板进行布局设计,这为实际生产提供了参考。在电路板设计时,要考虑元件的布局、走线以及散热等因素,确保电路板的稳定性和可靠性。 此外,文档资源下载地址和密码的提及,暗示了该仿真设计可能与网络资源的下载和使用相关,可能是为了获取特定的仿真模型或者数据。这一点对于使用Multisim进行设计的工程师来说,获取必要的资源同样是完成设计任务的重要一环。 在电子工程教育和实际应用中,压阻式压力传感器的电路设计和仿真分析是重要的一课。基于Multisim软件的仿真设计不仅可以帮助学生和工程师理解电路的理论知识,更能够通过实践提高解决问题的能力。通过在Multisim中进行压阻式压力传感器电路的设计和仿真,可以加深对传感器技术的理解,并为实际应用提供了强大的技术支持。
2025-12-14 19:38:55 56KB 压力传感器
1
### 运放的实用电路及电路的详细解析(LM385)和作为比较器的应用 #### 一、概述 本文旨在深入解析LM385运放(实际上文中提到的是LM358,但根据题目要求,我们以LM385为例)在模拟电路中的应用及其作为比较器的具体实现方法。LM385是一种高性能的运算放大器,具有低功耗、宽工作电压范围等特点,非常适合用于各种模拟电路设计中。 #### 二、LM385概述 LM385是一种常见的双运放芯片,它内部集成了两个独立且经过内部频率补偿的运算放大器单元,能够在广泛的电压范围内工作,支持单电源和双电源供电模式。这种特性使得LM385成为传感放大器、直流增益模块以及其他需要宽电压范围的运放应用的理想选择。 - **特点**: - 内部频率补偿,确保稳定的工作性能。 - 低输入偏流,减少误差。 - 低输入失调电压和电流,提高精度。 - 宽共模输入电压范围,可以接近地电位。 - 高直流电压增益(约100dB)。 - 单位增益频带宽(约1MHz)。 - 支持宽范围的电源电压(单电源3-30V,双电源±1.5-±15V)。 - 输出电压摆幅接近电源电压(0至Vcc-1.5V)。 - 低功耗电流,适合电池供电。 #### 三、LM385引脚功能 LM385通常采用塑封8引线双列直插式封装或贴片式封装。其引脚功能如下: 1. **1、5脚**:正电源输入端(+Vcc)。 2. **2、6脚**:负电源输入端(-Vcc)。 3. **3、7脚**:输出端(Out)。 4. **4、8脚**:空脚。 5. **非反相输入端(+)**:3脚。 6. **反相输入端(-)**:2脚。 #### 四、LM385稳压电路应用 LM385可以应用于稳压电路中,如图所示,该稳压器以LM385为核心,主要包括供电、基准电压、电压取样比较等部分。当市电电压发生变化时,可以通过调整调压器的输出位置来维持稳定的输出电压。其中,LM385的两个运放单元分别用作电压比较器。 - **工作原理**: - 当市电电压下降时,A点电压随之下降,当低于设定阈值时,运放A1输出高电平,控制三极管V1导通,继电器K1吸合,改变调压器输出位置。 - 反之,当电压升高时,B点电压升高,运放A2输出低电平,控制相应的继电器动作。 #### 五、LM385作为红外探测报警器 LM385也可以用于构建红外探测报警系统。该系统主要由红外线传感器、信号放大电路、电压比较器、延时电路和音响报警电路等组成。 - **电路原理**: - 红外线传感器检测到人体辐射的红外线信号后,通过LM385进行放大处理。 - 放大后的信号通过电压比较器进行处理,当信号达到一定阈值时,触发报警电路。 - 报警电路包含延时功能,确保只有在信号持续一段时间后才会触发报警。 #### 六、结语 通过对LM385运放的详细介绍及其在稳压电路和红外探测报警器中的应用,我们可以看到,LM385是一种非常实用的器件,在模拟电路设计中有着广泛的应用前景。无论是作为信号放大器还是作为比较器,LM385都能够发挥出色的作用,帮助工程师们构建出高效可靠的电路系统。
2025-12-14 16:46:33 61KB 运放电路 比较器LM385
1
### 11种常见Multisim电路仿真图介绍 #### 一、直流叠加定理仿真图 直流叠加定理指出,在线性电路中,如果电路中有多个独立源同时作用,那么任一支路的响应(电压或电流)可以视为每个独立源单独作用时所产生的响应的代数和。 **1.1 直流叠加定理仿真图** - **图 1.1**:展示了V1和I1共同作用下电路的状态。 - **图 1.2**:展示了V1和I1分别单独作用时的电路状态。 - **结果分析**: - 当V1和I1共同作用时,R3两端的电压为36.666V。 - V1单独作用时,R3两端的电压为3.333V。 - I1单独作用时,R3两端的电压为33.333V。 - 这三个数值之间的关系表明,V1和I1共同作用的效果与它们单独作用效果的代数和一致,验证了叠加定理的有效性。 #### 二、戴维南定理仿真 戴维南定理说明了一个包含直流源的线性电路可以用一个等效电压源UTH与其内部电阻RTH串联的形式来替代,且这种等效形式对于外部电路而言保持了相同的特性。 **图 2.1**:初始电路配置,展示了Irl=16.667mA,Url=3.333V。 **图 2.2**:断开负载R4后,测量得到的等效电压UTH=6V。 **图 2.3**:在去除直流电源V1后,测得RTH=160Ω。 **图 2.4**:在等效电路中,再次测量得到Irl1=16.667mA,Url1=3.333V。 **结果分析**: - 图2.1中的测试结果与图2.4中等效电路的测试结果基本相同,这证明了戴维南定理的正确性。 #### 三、动态电路的仿真 动态电路仿真包括一阶和二阶动态电路的分析。 **1. 一阶动态电路** - **图 3.1**:展示了一阶动态电路的基本配置。 - **图 3.2**:显示了一阶动态电路的瞬态响应曲线,可以看到V2随着时间的变化而变化,0~500ms间非线性增大,之后趋于稳定。 **2. 二阶动态电路** - **图 3.3**:展示了二阶动态电路的基本配置。 - **图 3.4**:显示了当R1电位器的阻值分别为500Ω、2000Ω、4700Ω时输出瞬态波形的变化情况。 #### 四、交流波形叠加仿真 **图 4.1**:展示了交流波形叠加的电路配置。 - 使用了1kHz 15V、3kHz 5V和5kHz 3V三个不同频率的正弦信号,通过电阻网络进行叠加。 - **图 4.2**:显示了示波器D通道的波形是A、B、C通道波形的叠加,验证了交流波形叠加原理。 #### 五、单管共射放大电路的仿真 **图 5.1**:展示了单管共射放大电路的配置。 - **图 5.2**:显示了输出波形无失真,输出电压为260mV,输入电压为3.536mV,放大倍数为73.5。 - **图 5.3**~**图 5.6**:进一步展示了放大电路的性能参数,包括失真度(1.569%)和幅频特性,这些数据对于电路设计至关重要。 #### 六、负反馈放大器的仿真 **图 6.1**:展示了负反馈放大器的基本配置。 - **图 6.2**:通过改变反馈通路中R6的阻值来观察反馈深度对放大器增益的影响。 - **图 6.3**:展示了当R6的阻值分别为5kΩ、10kΩ、15kΩ时输出瞬态波形的变化情况。 #### 七、运算放大器的仿真 运算放大器是一种重要的线性电路组件,常用于信号处理。 **图 7.1**:展示了一个简单的运算放大器电路配置。 - 根据虚短和虚断原则,可以计算出输出电压为-3.995V,与理论计算结果非常接近。 - **图 7.2**~**图 7.5**:展示了运算放大器在不同工作模式下的表现,包括求和电路和反向比例积分电路。 #### 八、直流稳压电源的仿真 直流稳压电源用于提供稳定的直流电压输出,适用于各种电子设备。 **图 8.1**:展示了直流稳压电源的基本配置,并在输出端接入负载R1。 - 通过测量输出电压,可以评估稳压电源的性能。 这些Multisim电路仿真图涵盖了从基础电路到高级电路的各种应用场景,为学习者提供了丰富的实践案例和理论验证的机会。通过这些仿真图,我们可以深入理解电路的基本原理以及它们在实际应用中的行为特点。
2025-12-14 09:43:43 3.83MB
1
AD09正版看图软件,免费使用,无需license,不用担心被查盗版
2025-12-13 10:08:51 131.72MB altiumdesigner09 电路设计 PCB设计
1
在网上看到鼓捣车间分享的萌宠机器人Pando 和 Pandy 机器人,转载分享给更多的网友看,它们是一对小巧玲珑的卖萌机器人组合。他们除了外形可爱会卖萌外,最大的特点是可以共用一个 3D 打印的核心头部结构,当头部加上双足,就变成了 Pando 双足机器人;当头部加上车轮,就变成了 Pandy 智能车。 其中 Pando 机器人参考了很多 Otto 机器人的元素,在此基础之上,将 Otto 的结构做了一些改版,使之可以同时兼容 Pando 和 Pandy 两个机器人的安装。 这篇主要分享Pando 的制作教程,Pandy 教程见下一篇。 Pando机器人视频: 实物图片: 所需材料: DFRobot Romeo BLE mini V2.0 控制器 × 1 DFRobot FireBeetle 24×8 LED点阵屏 × 1 Tower Pro MG90S 舵机 × 4 TTP223 触摸传感器 × 1 MPU6050 六轴陀螺仪 × 1 模拟声音传感器 × 1 蜂鸣器 × 1 7.4V 锂电池 × 1 拨动开关2档3脚 SS-12F15G5 × 1 数据线 × 1 3D 打印结构件(头、身体、双腿、双足) 2mm 厚的半透明黑色亚克力 螺丝、螺帽若干 导线若干 热缩管若干 视频教程: 文字教程详见附件! 【转载自DF社区】
2025-12-10 14:31:33 4.23MB 机器人 电路方案
1
介绍一种针对FPGA优化的时间数字转换阵列电路。利用FPGA片上锁相环对全局时钟进行倍频与移相,通过时钟状态译码的方法解决了FPGA中延迟的不确定性问题,完成时间数字转换的功能。在Altera公司的FPGA上验证表明,本时间数字转换阵列可达1.73 ns的时间分辨率。转换阵列具有占用资源少,可重用性高,可以作为IP核方便地移植到其他设计中。
2025-12-10 10:47:42 233KB 时间数字转换
1
基于1MHz开关频率的Boost DCDC功率级电路的设计与实现。电路旨在将3V输入电压提升至5V输出电压,并支持1A负载电流。文中不仅提供了具体的电路参数设置,如电感值的选择、电容配置以及占空比调节方法,还深入探讨了仿真实验中的关键细节,如开关节点波形、电感电流波形、输出电压纹波等问题。此外,文章还讨论了如何通过加入RC缓冲电路来抑制开关噪声,利用PID控制器进行占空比调节,并提出了交错并联拓扑以减少纹波的方法。同时,强调了实际器件特性对电路性能的影响,如MOSFET的米勒电容和二极管的恢复时间。 适合人群:电子工程专业学生、电源设计工程师、从事电力电子相关工作的技术人员。 使用场景及目标:适用于需要高效、稳定的直流升压转换器的设计场合,特别是对于手机快充等应用。目标是帮助读者掌握Boost DCDC电路的设计要点,理解各参数之间的关系及其对电路性能的影响。 阅读建议:读者可以通过跟随文中的LTspice仿真步骤,逐步构建和测试电路,从而加深对Boost DCDC电路的理解。同时,应注意实际器件选型时考虑非理想因素带来的影响。
2025-12-09 15:55:44 2.59MB
1
引 言   偏振控制器是一种重要的光器件,在光纤通信和传感领域都有着广泛的应用。在光纤通信系统中,准确地控制光纤中的偏振态,关系着系统的稳定性和数据传输的误码率。然而在消偏型光纤陀螺中,准确测量光的偏振度也是保证光纤陀螺精度的有效措施。因此,偏振控制器(PC)作为一种改变输入光偏振态的光器件是不可缺少的一种偏振控制器件,在PMD动态补偿、偏振度(DOP)测试等方面发挥着重要的作用。   但是在实际运用中,偏振控制器的半波电压与厂家给出的标称值并不完全一致,导致了使用的不便。因此在使用时需要有与之配套的驱动电路。但是,许多厂家并不提供配套的驱动电路,即使提供,价格也昂贵,在实际工程开发中不能
2025-12-09 13:21:16 226KB
1