内容概要:本文详细介绍了如何使用COMSOL软件模拟铌酸锂(LNOI)微环谐振腔中的诺共振现象。首先,通过几何建模创建微环结构,加入扰动项以增强模式耦合效果。接着,精确设置铌酸锂的各向异性材料参数,确保仿真准确性。然后,配置边界条件如完美匹配层(PML)和端口边界,避免反射干扰。再进行扫频计算,采用自适应频点扫描提高分辨率。最后,通过后处理生成电场分布动画和透射谱,识别出典型的非对称Fano线型。文中还提供了多个实用技巧,帮助解决常见问题,如收敛困难、场分布毛刺等。 适合人群:从事光子学研究的专业人士,尤其是对铌酸锂材料及其光学性质感兴趣的科研工作者和技术人员。 使用场景及目标:适用于需要深入理解铌酸锂微环谐振腔中Fano共振机制的研究项目,旨在探索铌酸锂的独特光学性能,优化微环结构参数以获得高质量的Fano共振效应。 其他说明:文中不仅涵盖了详细的建模步骤,还包括了物理场选择、参数调整等方面的经验分享,有助于读者快速掌握相关技能并应用于实际工作中。同时,强调了实验过程中可能遇到的问题及解决方案,使读者能够更加顺利地完成仿真任务。
2025-07-02 15:02:10 118KB
1
内容概要:本文详细介绍了利用Matlab Simulink搭建永磁同步电机(PMSM)效率优化模型的方。具体涵盖了三种不同的优化方:基于场定向控制(FOC)的进退和黄金分割,以及基于直接转矩控制(DTC)的最小损耗(LMC)模型。每种方都有详细的代码实现和技术要点解析,如进退中的自适应电流步长调整、黄金分割的高效寻优路径、DTC中的三维查表损耗模型等。此外,还提供了许多实用技巧,如Simulink Fast Restart功能的应用、Solver Profiler的使用等。 适合人群:对电机控制有一定基础的研究人员和工程师,特别是那些希望深入了解并掌握PMSM效率优化方的人群。 使用场景及目标:适用于需要进行PMSM效率优化的实际项目中,帮助工程师们提高电机控制系统的设计水平,优化系统性能,降低能耗。通过实际案例和代码实现,使读者能够快速上手并在实践中应用。 其他说明:建议使用Matlab 2020b及以上版本,以便充分利用最新的电机控制工具箱和其他相关功能。文中提供的代码片段可以直接用于Simulink模型中,方便快捷地实现各种优化方
2025-06-30 14:04:51 825KB
1
传统蒙文输入/回鹘蒙文输入/蒙科立输入
2025-06-27 12:04:18 7.96MB
1
《构建基于微信小程序的全方位定位系统》 在当今数字化时代,定位系统已经成为日常生活与工作中不可或缺的一部分,尤其是在移动应用领域。本文将深入探讨如何利用微信小程序、硬件设备和巴云(Baidu Map Cloud,以下简称“巴云”)构建一个功能全面的定位系统,包括自身定位、追踪他人位置、路线规划、天气显示以及用户个人信息管理等功能。 微信小程序是腾讯公司推出的一种轻量级应用开发框架,它无需下载安装即可使用,大大降低了用户的使用门槛。在构建定位系统时,微信小程序的优势在于其广泛用户基础和便捷的社交分享功能。开发者可以利用微信小程序的API接口,获取用户的地理位置信息,实现自身定位功能。同时,通过授权机制,用户可以在保护隐私的前提下,分享自己的位置信息给其他用户,从而实现对方定位。 接下来,硬件设备在定位系统中的作用不可忽视。通常,硬件设备如GPS模块或者蓝牙Beacon等,可以提供精确的位置数据。这些设备与微信小程序结合,可以实时更新并展示用户的位置。硬件设备的信号强度分析,还可以帮助判断用户是在室内还是室外,进一步提升定位的准确性。 巴云作为国内领先的地图服务提供商,提供了强大的地图API和定位服务。开发者可以调用其提供的路线规划服务,根据起始点和目的地为用户提供最优的出行建议,包括步行、骑行、驾车等多种方式。此外,巴云的天气插件可以让系统实时获取并显示当前位置的天气情况,为用户出行提供更多便利。 个人信息获取和修改是定位系统的重要组成部分。在微信小程序中,用户可以注册并登录个人账号,填写或修改个人信息,如姓名、联系方式等。开发者应确保所有信息的安全存储,并遵循数据保护规,尊重用户的隐私权。 系统的配置功能允许用户根据自身需求定制定位服务。例如,用户可以选择是否开启实时位置共享,设置安全区域提醒,甚至自定义路线规划的偏好等。这一功能的实现依赖于后台数据库的动态更新和微信小程序的实时交互。 总结来说,构建一个基于微信小程序、硬件设备和巴云的定位系统,需要整合多种技术手段,包括微信小程序的开发、硬件设备的集成、地图服务的调用以及用户信息管理。这样的系统不仅能满足日常的导航需求,还能在社交、安全监控等领域发挥重要作用,是现代移动应用的一个重要发展方向。
2025-06-26 15:47:15 426KB 微信小程序 路线规划
1
内容概要:本文详细介绍了利用COMSOL软件对二元合金枝晶生长进行相场模拟的研究。首先概述了COMSOL作为多物理场模拟工具的应用背景及其在枝晶生长模拟中的优势。接着阐述了相场的基本原理,即通过引入相场变量来描述材料的相变过程,进而模拟枝晶的生长形态。重点讨论了二元合金中溶质偏析现象对枝晶生长的影响,解释了不同组分原子的扩散速度和溶解度差异导致的溶质偏析效应。最后强调了在COMSOL模拟中考虑溶质偏析的重要性,指出这对优化金属和合金制备工艺以及提升材料性能的关键意义。 适合人群:从事材料科学研究的专业人士,尤其是对金属和合金凝固过程感兴趣的科研工作者和技术人员。 使用场景及目标:适用于希望深入了解枝晶生长机理及其受溶质偏析影响的研究者;旨在帮助研究人员优化实验设计,改进材料制备工艺,提高材料性能。 其他说明:随着计算机技术的进步,相场模拟将变得更加精准,为材料科学提供更多的理论支持和实际指导。
2025-06-25 19:31:02 2.42MB
1
二元合金枝晶生长相场模拟:溶质偏析的影响研究,comsol枝晶生长相场模拟 二元合金 考虑溶质偏析 ,核心关键词:comsol模拟; 枝晶生长; 相场; 二元合金; 溶质偏析。,"二元合金溶质偏析的Comsol枝晶生长相场模拟" 在材料科学领域,合金的枝晶生长是一种重要的现象,尤其在金属加工和固态相变研究中占有重要地位。枝晶生长影响着合金的微观结构,进而影响材料的物理和化学性质。为了深入理解枝晶生长的机理,研究人员通常采用计算模拟的方,其中,相场是一种有效的模拟工具。相场可以用来描述材料的微观组织演变,它通过求解偏微分方程来模拟相界面的演化行为。而在二元合金中,溶质偏析现象是影响枝晶生长的一个关键因素。溶质偏析指的是溶质元素在枝晶生长过程中在固相和液相中的不均匀分布。这种不均匀分布会直接影响枝晶的形态和生长速度,进而影响合金的宏观性能。 COMSOL Multiphysics是一款基于有限元分析的商业仿真软件,它能够模拟多种物理场的相互作用,其中包括结构力学、流体动力学、热传递、电磁学等。在研究二元合金枝晶生长时,COMSOL可以用来搭建模型,模拟相场计算,从而研究溶质偏析对枝晶生长的影响。COMSOL的灵活性和强大的后处理能力使得它成为材料科学中进行复杂模拟的理想选择。 在这项研究中,研究者们将关注点放在了溶质偏析对枝晶生长的影响上,通过对不同条件下枝晶生长过程的模拟,探究溶质分布与枝晶形态之间的关系。这涉及到对合金微观结构的深入分析,以及对不同温度梯度、凝固速度、合金成分等因素如何影响溶质偏析的详细考察。通过对这些因素的模拟,研究者可以预测在实际生产过程中可能出现的问题,并为合金设计和工艺优化提供理论指导。 从文件名列表中可以看到,文档和图片资料涵盖了研究的多个方面,包括引言、分析以及模拟结果的展示。例如,“枝晶生长相场模拟二元合金溶质偏析分.doc”可能包含了模拟研究的分步骤解析,“相场模拟二元合金枝晶生长中的溶质偏析.html”可能提供了关于模拟方和结果的详细介绍。而图片文件“1.jpg”到“4.jpg”则可能包含了模拟过程中枝晶生长的图像或者是模拟结果的可视化表达。 这项研究对于材料科学和工程技术领域具有重要的意义,它不仅能够帮助工程师和科研人员更好地理解和控制合金的微观结构,而且能够推动相关技术的创新和发展。通过对枝晶生长过程的精确模拟,可以为新材料的开发提供理论依据,促进高性能合金材料的设计和应用。
2025-06-24 22:24:47 1004KB css3
1
Liang文献中的精确势能分析:行星齿轮外啮合刚度程序研究(含齿形及相位差因素),基于势能与精确齿形分析的行星齿轮外啮合时变啮合刚度程序研究,根据Liang文献采用势能编写的行星齿轮外啮合齿轮副时变啮合刚度程序(健康齿),内齿圈固定,行星架旋转,程序中考虑了精确的渐开线齿形以及齿轮变位,同时考虑了各啮合齿轮副之间的相位差。 ,核心关键词: 1. 势能 2. 行星齿轮外啮合 3. 时变啮合刚度程序 4. 健康齿 5. 内齿圈固定 6. 行星架旋转 7. 渐开线齿形 8. 齿轮变位 9. 相位差 用分号分隔的关键词结果为:势能;行星齿轮外啮合;时变啮合刚度程序;健康齿;内齿圈固定;行星架旋转;渐开线齿形;齿轮变位;相位差。,Liang文献:行星齿轮外啮合刚度程序(健康齿)
2025-06-23 18:48:00 305KB css3
1
内容概要:本文详细介绍了基于MATLAB Simulink构建的光伏储能并网交直流发电系统的仿真模型及其关键控制策略。主要内容涵盖光伏系统的最大功率跟踪(MPPT),采用扰动观察实现最大功率输出;蓄电池的双向DC-DC变换器及其双闭环控制,通过电压环和电流环的PI调节器确保系统的稳定性和响应速度;并网控制的P/Q控制策略,使电网或储能装置的有功和无功输出随控制系统指令变化。文中还讨论了2018a和2021a版本的仿真特点和优化措施,展示了如何通过模块化设计构建完整的交直流发电系统仿真模型。 适合人群:从事电力系统、可再生能源研究的专业人士,尤其是对光伏储能并网系统感兴趣的科研人员和技术开发者。 使用场景及目标:适用于希望深入了解光伏储能并网系统仿真建模及控制策略的人群,旨在提升系统效率和稳定性,推动可再生能源技术的发展。 其他说明:随着MATLAB Simulink的不断更新,未来版本将提供更多功能和优化措施,进一步提高仿真的准确性和效率。
2025-06-23 17:14:51 683KB MATLAB Simulink
1
内容概要:本文深入探讨了在三相不平衡电压条件下,ANPC三电平并网逆变器的并网控制策略。主要内容包括:1) 正负序分离锁相环及其正序PI控制和负序PI控制的应用,以实现对并网电流的精准控制;2) 中点电位平衡控制——零序电压注入,确保中点电位的稳定性;3) SPWM调制方式的采用,提升逆变器输出电压的精度。此外,还提供了详细的仿真研究,包括电流环参数设计、正负序分离方、零序电压注入及SVPWM调制原理的讲解。最终通过仿真实验验证了所提控制策略的有效性和可行性。 适用人群:从事电力电子、新能源发电领域的研究人员和技术人员,特别是关注并网逆变器性能优化的专业人士。 使用场景及目标:适用于希望深入了解并掌握三相不平衡电压环境下ANPC三电平并网逆变器控制策略的研发人员。目标是在实际项目中应用这些先进的控制方来改善系统的电能质量和可靠性。 其他说明:文中提供的仿真源文件支持Simulink 2022以下版本,默认为2016b版本,可根据需求调整版本。
2025-06-23 16:09:08 845KB 电力电子
1
### 光束平差模型详解 #### 一、引言 光束平差是在摄影测量领域中广泛应用的一种计算方,它通过整合外方位元素和模型点坐标的计算过程,提高了整体精度与效率。本文将详细介绍光束平差模型的理论基础,包括旋转矩阵的四元素表示以及光束平差模型的具体步骤。 #### 二、旋转矩阵的四元素表示 在摄影测量中,为了减少计算复杂度并避免奇异问题,常采用四元素表示旋转矩阵。这种方由Pope提出,并被Hinsken进一步发展成为P-H算。 **2.1 四元素条件** 四元素\(d, a, b, c\)需要满足特定条件,即: \[ d^2 + a^2 + b^2 + c^2 = 1 \] **2.2 构造正交矩阵** 基于这四个参数,可以构建两个正交矩阵\(P\)和\(Q\),进而形成旋转矩阵\(R\): \[ P = \left[ \begin{array}{ccc} d^2 + a^2 - b^2 - c^2 & 2(ab + dc) & 2(ac - db) \\ 2(ab - dc) & d^2 - a^2 + b^2 - c^2 & 2(bc + da) \\ 2(ac + db) & 2(bc - da) & d^2 - a^2 - b^2 + c^2 \end{array} \right] \] \[ Q = \left[ \begin{array}{ccc} d^2 - a^2 - b^2 + c^2 & 2(ab + dc) & 2(ac - db) \\ 2(ab - dc) & d^2 - a^2 + b^2 - c^2 & 2(bc + da) \\ 2(ac + db) & 2(bc - da) & d^2 + a^2 - b^2 - c^2 \end{array} \right] \] 由此,旋转矩阵\(R\)可以表示为: \[ R = P \cdot Q^\top \] 这种表示方式能够简化旋转矩阵的计算过程,并避免了传统旋转矩阵表示中的多值性和奇异性问题。 #### 三、光束平差模型 光束平差的核心在于将外方位元素和模型点坐标的计算置于同一优化过程中。它基于共线方程式的数学模型,并通过迭代逐步逼近最优解。 **3.1 共线方程式的表达** 假设摄影中心\(S\)的世界坐标为\((S_x, S_y, S_z)\),空间点\(M\)的坐标为\((X, Y, Z)\),而\(M\)在影像上的构象为\(m\),其像平面坐标为\((x, y, -f)\)。根据S、m、M三点共线关系,可以得出共线方程式: \[ \frac{x - x_0}{l} = \frac{y - y_0}{m} = \frac{-f}{n} = \rho \] 其中,\(\rho\)为比例系数,\(l, m, n\)分别为旋转矩阵的行向量,\((x_0, y_0, f)\)为影像内方位元素。 **3.2 共线方程式的线性化** 为了进行最小二乘计算,需要对非线性的共线方程式进行线性化处理。线性化后的误差方程可以表示为: \[ \Delta l_i = A_{i} \cdot \Delta X \] 其中,\(\Delta l_i\)为观测值与理论值之间的残差,\(\Delta X\)为未知数改正数组,\(A_i\)为系数矩阵。 **3.3 误差方程式的建立** 结合线性化的共线方程式和观测数据,可以建立误差方程式。对于控制点还需要考虑权重赋值,以便更准确地反映数据质量。 **3.4 方程式的建立** 根据最小二乘原理,建立方程式以求解未知数改正数。对于加密点,仅需列出误差方程式;而对于控制点,则需要同时列出误差方程式和虚拟误差方程式。 **3.5 结果判定** 迭代计算直到未知数改正数满足预设的限差条件为止。迭代过程中,初始值的选择对收敛速度有很大影响。实践中,常用的方是先进行空间后方交会获得初步的外方位元素,以此作为迭代过程的初始值。 ### 四、总结 光束平差模型是一种高效的摄影测量计算方,它通过整合外方位元素和模型点坐标的计算过程,提高了整体精度与效率。通过对旋转矩阵的四元素表示和光束平差模型的详细阐述,我们可以更好地理解这一方的基本原理及其在实际应用中的优势。未来,随着计算机技术的发展,光束平差模型将在更多领域发挥重要作用。
2025-06-23 15:09:56 134KB 光束法平差
1