搜索引擎基于CASME2数据集训练的微表情识别系统_支持摄像头实时检测和图片视频分析_包含面部微表情特征提取与分类算法_采用深度学习框架TensorFlow和Keras实现_集成VGG16.zip
2025-09-21 13:59:54 60.79MB python
1
**正文** TensorFlow MNIST数据包是机器学习和深度学习领域的一个经典资源,主要用于训练和测试手写数字识别模型。这个数据集包含了60,000个训练样本和10,000个测试样本,每个样本都是28x28像素的灰度图像,代表了0到9的手写数字。MNIST数据集因其简洁性和易用性,成为了初学者了解深度学习以及评估新算法性能的首选。 **1. TensorFlow简介** TensorFlow是由Google Brain团队开发的一个开源库,用于数值计算和大规模机器学习。它提供了一个强大的平台,支持从概念验证到生产部署的端到端机器学习工作流程。TensorFlow基于数据流图,允许用户定义计算图形,并在多种平台上高效运行,包括CPU、GPU甚至是分布式系统。 **2. MNIST数据集** MNIST数据集最初由Yann LeCun等人建立,是Machine Integer Recognition in Easy Cases(MIRCE)的缩写,是光学字符识别(OCR)领域的标准数据集。它由两部分组成:训练集(60,000张图片)和测试集(10,000张图片)。每张图片都经过预处理,将原始扫描图像缩放并裁剪为28x28像素的尺寸,同时归一化到0到1之间,以减少计算机处理的复杂性。 **3. 手写数字识别** 手写数字识别是模式识别的一个子领域,目标是通过分析图像来识别出图像中的手写数字。在MNIST数据集上进行手写数字识别,通常采用卷积神经网络(CNN)或者全连接神经网络(FCN)等深度学习模型。这些模型能够自动从原始像素数据中提取特征,从而实现高精度的分类。 **4. 使用TensorFlow加载MNIST数据** 在TensorFlow中,可以使用内置的`tf.keras.datasets.mnist`模块轻松加载MNIST数据集。以下是一个简单的示例代码: ```python import tensorflow as tf (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 # 数据归一化 # 建立模型、编译和训练 model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10, activation='softmax') ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, epochs=10) # 评估模型 model.evaluate(x_test, y_test) ``` **5. 模型优化与评估** 在训练模型时,我们通常会调整超参数、使用正则化防止过拟合、采用数据增强等方法提高模型性能。评估模型时,会查看准确率、混淆矩阵等指标,以理解模型在不同类别上的表现。 **6. 扩展应用** MNIST数据集不仅限于手写数字识别,还可以用于研究新的机器学习技术,如自编码器、生成对抗网络(GANs)等。此外,它也是教学和实验深度学习基础的绝佳起点。 TensorFlow MNIST数据包是机器学习初学者和研究者的重要工具,通过这个数据集,我们可以学习和实践深度学习的基础知识,以及如何在实际项目中运用TensorFlow。在不断发展的AI领域,掌握这些技能对于个人和企业的成长至关重要。
2025-09-16 11:33:52 11.06MB TensorFlow MNIST数据包
1
EPUB格式,包含配套代码。压缩包里还包括Fluent Python,PDF和EPUB格式;Python Master the Art of Design Patterns,PDF格式。 What you will learn Understand the basics of RL methods, algorithms, and elements Train an agent to walk using OpenAI Gym and Tensorflow Understand Markov decision process, Bellman's optimality, and temporal difference (TD) learning Solve multi-armed bandit problems using various algorithms Master deep learning algorithms, such as RNN, LSTM, and CNN with applications Build intelligent agents using the DRQN algorithm to play the Doom game Teach agents to play the Lunar Lander game using DDPG Train an agent to win a car racing game using dueling DQN
2025-09-14 15:48:46 129.58MB tensorflow python
1
证据深度学习 “所有模型都是错误的,但是某些模型(知道何时可以信任它们)是有用的!” -乔治·博克斯(改编) 该存储库包含用于重现的代码(如所发布的),以及更通用的代码,以利用证据学习来训练神经网络,以直接从数据中学习不确定性! 设置 要使用此软件包,必须首先安装以下依赖项: python(> = 3.7) 张量流(> = 2.0) pytorch(支持即将推出) 现在,您可以安装以开始为模型添加证据层和损失! pip install evidential-deep-learning 现在,您可以直接在现有tf.keras模型管道( Sequential , Functional或model-subclassing )的一部分中直接使用此包: >>> import evidential_deep_learning as edl 例子 要使用证据深度学习,必须将模型的最后
2025-09-12 16:24:15 9.6MB deep-learning neural-network tensorflow pytorch
1
在本项目中,开发者利用了深度学习技术,特别是卷积神经网络(CNN)以及U-Net模型,结合OpenCV库(cv2),实现了一个针对中文车牌的定位、矫正和端到端识别系统。这个系统展示了如何将先进的计算机视觉技术与深度学习算法相结合,以解决实际的图像处理问题。 U-Net是一种特殊的卷积神经网络架构,广泛应用于图像分割任务,包括对象检测和定位。其特点是具有对称的收缩和扩张路径,收缩路径负责捕获上下文信息,而扩张路径则用于精确地恢复对象细节。在车牌定位中,U-Net可以高效地找出图像中的车牌区域,生成对应的掩模,从而帮助确定车牌的位置。 OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉库,包含了大量的图像处理和计算机视觉的算法。在这里,它被用来对定位后的车牌进行图像矫正。OpenCV可以执行图像变换,如旋转、缩放和仿射变换,以确保即使车牌角度不正,也能得到正向展示的图像,这为后续的字符识别步骤打下基础。 接下来,卷积神经网络(CNN)是深度学习中的核心组件,尤其在图像识别任务中表现出色。在这个项目中,CNN模型被训练来识别经过定位和矫正后的车牌上的字符。CNN通过学习多个卷积层和池化层,能自动提取图像特征,并在全连接层进行分类。训练过程中,可能使用了TensorFlow这一强大的深度学习框架,它提供了丰富的工具和接口,简化了模型构建和训练的过程。 TensorFlow是谷歌开发的开源平台,用于构建和部署机器学习模型。它支持数据流图的构建,允许开发者定义计算流程,然后在CPU或GPU上高效执行。在车牌字符识别阶段,开发者可能构建了一个CNN模型,用大量的带标签车牌图像进行训练,使得模型能够学习到中文字符的特征,达到高精度的识别效果。 这个项目综合运用了深度学习(如U-Net和CNN)、计算机视觉(OpenCV)和强大的开发工具(TensorFlow),实现了对中文车牌的精准定位、矫正和字符识别。这样的端到端解决方案对于智能交通、安防监控等领域有着重要的应用价值,同时也展示了深度学习在解决复杂图像识别问题上的强大能力。通过深入理解和实践这些技术,开发者可以进一步优化模型性能,提升系统在实际环境中的应用效果。
2025-09-04 02:09:30 27.73MB 人工智能 深度学习 tensorflow
1
《手写数字识别:基于TensorFlow的LeNet-5模型详解》 在现代科技领域,人工智能(AI)已经成为了一个热门话题,而深度学习作为AI的一个重要分支,正在逐步改变我们的生活。TensorFlow作为Google开发的一款强大的开源库,为深度学习提供了高效、灵活的平台。本篇文章将深入探讨如何使用TensorFlow实现手写数字识别,特别是基于经典的LeNet-5模型。 一、手写数字识别简介 手写数字识别是计算机视觉领域的一个基础任务,其目标是让计算机能够识别和理解人类手写的数字。这项技术广泛应用于自动邮件分拣、移动支付等领域。MNIST数据集常被用作训练手写数字识别模型的标准数据集,包含60000个训练样本和10000个测试样本,每个样本都是28x28像素的手写数字图像。 二、LeNet-5模型 LeNet-5是由Yann LeCun等人在1998年提出的,它是最早用于手写数字识别的卷积神经网络(CNN)之一。LeNet-5由几个主要部分组成:输入层、两个卷积层、两个最大池化层、一个全连接层和一个输出层。卷积层用于提取图像特征,池化层用于减小数据尺寸并保持关键特征,全连接层则用于分类。 三、TensorFlow与LeNet-5模型结合 TensorFlow提供了一套强大的API,可以方便地构建和训练LeNet-5模型。我们需要导入必要的库,包括TensorFlow和MNIST数据集。然后,定义模型的结构,包括卷积层、池化层和全连接层。接下来,设置损失函数(如交叉熵)和优化器(如Adam),并定义训练过程。通过训练集进行模型训练,并在测试集上评估模型性能。 四、模型训练与优化 在TensorFlow中,我们可以设定批次大小、训练轮数和学习率等参数来调整模型的训练过程。为了防止过拟合,可以使用正则化、Dropout或早停策略。此外,还可以通过调整超参数、模型结构或引入预训练模型来进一步优化模型性能。 五、实验结果与分析 在完成模型训练后,我们会得到模型在MNIST测试集上的准确率。通过分析模型的错误情况,可以了解模型在哪些数字上表现不佳,从而提供改进的方向。例如,可能需要调整网络结构,增加更多的卷积层或全连接层,或者调整激活函数。 六、实际应用与挑战 手写数字识别技术已经广泛应用于ATM机、智能手机和智能家居设备中。然而,实际应用中还面临许多挑战,如复杂背景、手写风格的多样性以及实时性要求。因此,持续研究和改进模型以适应这些挑战是至关重要的。 总结,本文介绍了如何使用TensorFlow实现基于LeNet-5模型的手写数字识别。通过理解模型结构、训练过程以及可能的优化策略,读者可以深入了解深度学习在解决实际问题中的应用。随着技术的不断发展,我们可以期待在手写数字识别以及其他计算机视觉任务中看到更多创新和突破。
2025-09-02 15:38:56 80.9MB 人工智能 深度学习 tensorflow
1
《Tensorflow+Keras深度学习人工智能实践应用》是由林大贵先生所著的一本专注于深度学习技术的实践教程书籍。本书重点介绍了如何利用TensorFlow和Keras这两个强大的深度学习框架来构建和实现各种人工智能应用。TensorFlow是由Google开发的一个开源机器学习库,它广泛应用于数据流图的数值计算。Keras则是一个高层神经网络API,它能够在TensorFlow之上提供更加简洁、快速的实验途径。 书中不仅对深度学习的基本概念、理论和算法进行了详细介绍,更通过大量的实践案例来帮助读者理解并掌握TensorFlow和Keras的实际应用。在本书中,林大贵先生通过对具体问题的分析和解决,展示了如何使用TensorFlow和Keras构建神经网络模型,进行数据预处理,以及如何训练和评估模型。这些实践案例包括但不限于图像识别、文本处理、语音识别等人工智能领域的热门应用。 由于本书的代码实现依赖于Python语言,因此作者强调了Python编程在深度学习中的重要性,并指导读者如何设置Python环境,以及如何使用Python中的相关库来完成深度学习项目。通过Python,读者可以更加灵活地操作数据、编写算法,并且能够利用大量现成的库和框架来加速开发过程。 此外,本书可能还包含了对深度学习未来发展趋势的探讨,帮助读者理解深度学习在工业界和学术界的最新应用,以及它在解决现实世界问题中的潜力和挑战。通过阅读本书,读者不仅能学习到深度学习的基础知识,还能掌握如何将这些知识应用到实际问题中,从而为未来在人工智能领域的发展打下坚实的基础。 《Tensorflow+Keras深度学习人工智能实践应用》是一本结合理论与实践,适合有一定编程基础和对深度学习感兴趣的读者的书籍。它能够帮助读者从零开始,逐步成长为能够在人工智能领域独立进行研究和开发的专业人才。
2025-08-29 12:36:05 1.18MB
1
内容概要:本文针对Salto机器人的智能夹爪系统开发需求,从硬件架构、软件算法和嵌入式系统三个维度提供完整的解决方案。硬件架构方面,详细描述了由IMU传感器、STM32H7主控、Dynamixel舵机、ToF激光雷达、压力传感器阵列、ESP32协处理器和AI加速器组成的硬件拓扑结构。软件算法部分,提供了基于STM32 HAL库和ROS2框架的核心C++源代码,包括松鼠抓取模式的运动控制算法和基于TensorFlow Lite Micro的跳跃预测模型。嵌入式系统方面,介绍了系统的初始化、主控制循环、关键技术实现(如仿生运动控制、自适应阻抗控制、跳跃预测模型)及系统部署流程。此外,还详细描述了跳跃预测模型的训练过程,涵盖数据采集、特征工程、LSTM模型架构、训练优化策略及模型部署优化。 适合人群:具备嵌入式系统开发经验,熟悉C++编程语言,对机器人技术感兴趣的工程师和技术人员。 使用场景及目标:①帮助开发者理解Salto机器人智能夹爪系统的硬件架构设计;②掌握基于STM32 HAL库和ROS2框架的软件算法实现;③学习如何训练和部署跳跃预测模型,提高机器人的跳跃预测能力。 其他说明:此资源不仅提供了详细的硬件和软件设计方案,还包含了完整的训练跳跃预测模型的方法。开发者可以根据提供的代码和训练方案,在STM32H7平台上进行实际部署和测试。建议在学习过程中结合硬件搭建和代码调试,逐步深入理解每个模块的功能和实现细节。
2025-08-10 09:15:05 24KB 嵌入式系统 ROS2 TensorFlow Lite
1
通过利用pandas库对数据清洗等初步处理后以实现基本实体及实体关系的确认,可实现将现有数据导入neo4j数据库形成基本的图谱 接下来目标: 1.利用TensorFlow建立训练模型对【来源】,【用法用量】,【主治功能】,【性味】等存在大段文字的实体进行进一步的抽取,争取做到抽出准确词语。 2.利用远程监督的方式(或者是其他的方式),对实体关系进行抽取,目前要使用的技术工具还未知。 适用人群:学习不同技术领域的小白或进阶学习者;可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。
2025-07-25 13:46:03 13.45MB python tensorflow tensorflow 知识图谱
1
【项目资源】: 包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。 包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。
2025-07-19 14:12:02 1.17MB 毕业设计 课程设计 项目开发 资源资料
1