COCO LM预训练(WIP) 在Pytorch中实现 ,纠正和对比文本序列以进行语言模型预训练。 他们能够以自我监督的方式进行对比学习,以进行语言模型预训练。 似乎是Electra的坚实后继者。 安装 $ pip install coco-lm-pytorch 用法 使用x-transformers库的示例 $ pip install x-transformers 然后 import torch from torch import nn from x_transformers import TransformerWrapper , Encoder from coco_lm_pytorch import COCO # (1) instantiate the generator and discriminator, making sure that the generator is ro
1
语言模型预训练已经显示出可以捕获数量惊人的世界知识,这对于NLP任务(例如问题 解答)至关重要。但是,此知识隐式存储在神经网络的参数中,需要更大的网络才能 覆盖更多的事实。 为了以更模块化和可解释的方式捕获知识,我们使用潜在的知识检索器增强了语言模 型的预训练,检索器使模型可以从预训练、微调和推理期间使用的大型语料库(如 Wikipedia)中检索并使用文档。首次,我们展示了如何使用蒙版语言建模作为学习信 号并通过考虑数百万个文档的检索步骤进行反向传播,从而以无监督的方式对这种知 识检索器进行预训练。 我们通过微调开放域问答(Open-QA)的挑战性任务,证明了检索增强语言模型预训练 (REALM)的有效性。我们在三个流行的Open-QA基准测试中与最先进(SOTA)的显式和隐 式知识存储模型进行了比较,发现我们在性能上优于所有以前的方法(绝对精度为 4-16%),同时还提供了定性优势,例如可解释性和模块化。
2022-10-14 00:25:44 727KB 自然语言处理 REALM 预训练 问答
1
NLP领域取得最重大突破!谷歌AI团队新发布的BERT模型,在机器阅读理解顶级水平测试SQuAD1.1中表现出惊人的成绩:全部两个衡量指标上全面超越人类,并且还在11种不同NLP测试中创出最佳成绩。毋庸置疑,BERT模型开启了NLP的新时代!
2022-05-26 23:37:46 717KB BERT
1
伊莱克特拉-火炬 详细介绍了一种用于快速训练语言模型的简单工作包装。 与普通的屏蔽语言建模相比,它可以将训练速度提高4倍,并且如果训练时间更长,最终可以达到更好的性能。 特别感谢抽出时间为GLUE复制了结果。 安装 $ pip install electra-pytorch 用法 以下示例使用了reformer-pytorch ,可以通过pip安装。 import torch from torch import nn from reformer_pytorch import ReformerLM from electra_pytorch import Electra # (1) instantiate the generator and discriminator, making sure that the generator is roughly a quarter to a half
1
2020-Rethinking Pre-training and Self-training.pdf
2021-08-15 13:16:31 332KB 深度学习 人工智能
1
计算机视觉Github开源论文
2021-06-03 09:09:02 2.17MB 计算机视觉
1