内容概要:本文探讨了基于非线性模型预测控制(NMPC)与近端策略优化(PPO)强化学习在无人船目标跟踪控制中的应用及其优劣对比。首先介绍了无人船在多个领域的广泛应用背景,随后详细阐述了NMPC通过建立非线性动力学模型实现高精度跟踪的方法,以及PPO通过试错学习方式优化控制策略的特点。接着从精度与稳定性、灵活性、计算复杂度等方面对两者进行了全面比较,并指出各自的优势和局限性。最后强调了Python源文件和Gym环境在实现这两种控制方法中的重要性,提供了相关文献和程序资源供进一步研究。 适合人群:从事无人船技术研发的研究人员、工程师及相关专业学生。 使用场景及目标:适用于希望深入了解无人船目标跟踪控制技术原理并进行实际项目开发的人群。目标是在不同应用场景下选择最合适的控制方法,提高无人船的性能。 其他说明:文中不仅涉及理论分析还包含了具体的Python实现代码,有助于读者更好地掌握相关技术细节。
2025-06-05 10:25:35 527KB
1
在深度学习与机器学习领域,强化学习是一种让机器通过与环境的交互来学习策略的方法,其目标是让智能体在特定任务中获得最大的累积奖励。近年来,随着强化学习算法的发展,特别是以深度学习为基础的深度强化学习在各种复杂任务中取得了显著的成就。在这些成就背后,一种名为“ml-agents”的工具包发挥了重要作用。 ml-agents(Machine Learning Agents)是由Unity开发的一套开源工具集,它允许研究人员和开发者利用Unity游戏引擎强大的图形渲染能力和交互环境来构建强化学习实验。通过ml-agents,开发者可以轻松地在虚拟环境中训练智能体,无论是为了游戏开发还是模拟真实世界中的复杂问题。ml-agents为强化学习实验提供了一系列工具和API,使得建立和测试新的算法更加便捷。 在本压缩包文件中,标题提到的“ppo算法”即为“Proximal Policy Optimization”算法,这是一种先进的策略梯度方法,用于解决强化学习中的优化问题。PPO算法在稳定性、效率和样本利用率方面表现出色,这使得它在处理连续动作空间问题和离散动作空间问题时都非常有效。PPO算法的核心思想是在优化过程中保持策略更新的稳定性和适度性,避免因为更新过大而破坏已经学习到的行为策略。 基于ml-agents和ppo算法的强化学习项目,通常需要涉及到以下几个方面:环境搭建、智能体设计、算法实现以及结果评估。环境搭建涉及使用Unity游戏引擎来构建智能体需要交互的虚拟环境。智能体设计是决定智能体如何感知环境、采取动作并从环境中学习的关键部分。接着,算法实现部分需要将ppo算法融入到ml-agents中,通过编写相应的代码来训练智能体。结果评估则关注训练好的智能体在环境中的表现,包括但不限于它在特定任务中的性能表现、策略的有效性等。 该项目作为计算机系的毕业设计,可能还包含其他方面的内容,比如文献综述、方法论的阐述、实验设计、数据分析以及未来工作的展望等。文献综述部分可能会梳理强化学习的发展历程、现有算法的优缺点以及应用场景。方法论的阐述则清晰地解释所使用的ml-agents工具包和ppo算法的理论基础和实现方法。实验设计部分需要详细说明如何在所搭建的环境中训练智能体,包括智能体的设计参数、训练的迭代次数、奖励函数的设计等。数据分析部分则关注实验中收集的数据,以及如何从数据中提取有价值的信息来评估智能体的表现。未来工作的展望可能会涉及本项目研究的局限性、可能的改进方法以及未来研究方向。 基于ml-agents和ppo算法的强化学习项目不仅对于学术研究具有重要意义,而且在工业界也有广泛的应用前景。随着技术的不断进步,此类项目有望解决更加复杂的问题,并推动机器学习领域的进一步发展。
2025-05-28 08:28:32 28.29MB 毕业设计
1
(1)在中国A股市场15只股票上的应用 (2)构建投资组合 (3)每日调仓 (4)绘制收益率曲线 (5)PPO算法
2024-05-20 15:27:15 4.29MB python 量化投资 强化学习 投资组合
流行的无模型强化学习算法 PyTorch和Tensorflow 2.0在Openai体育馆环境和自行实现的Reacher环境中均实现了最新的无模型强化学习算法。 算法包括软参与者关键(SAC),深度确定性策略梯度(DDPG),双延迟DDPG(TD3),参与者关键(AC / A2C),近端策略优化(PPO),QT-Opt(包括交叉熵( CE)方法) , PointNet ,运输商,循环策略梯度,软决策树等。 请注意,此存储库更多是我在研究和实施期间实施和测试的个人算法集合,而不是正式的开放源代码库/软件包以供使用。 但是,我认为与他人分享它可能会有所帮助,并且我希望对实现进行有益的讨论。 但是我没有花太多时间在清理或构建代码上。 您可能会注意到,每种算法可能都有几种实现方式,在此我特意展示所有这些方式,供您参考和比较。 此外,此存储库仅包含PyTorch实施。 对于RL算法的官方库,
1
盆式PPO 关于沉思-PPO 这是Pensieve [1]的一个简单的TensorFlow实现。 详细地说,我们通过PPO而非A3C培训了Pensieve。 这是一个稳定的版本,已经准备好训练集和测试集,并且您可以轻松运行仓库:只需键入 python train.py 反而。 将每300个时代在测试集(来自HSDPA)上评估结果。 实验结果 我们报告了熵权重β,奖励和熵的训练曲线。 通过双簧管网络轨迹评估结果。 提示:橙色曲线:pensieve-ppo; 蓝色曲线:pensieve-a2c 预训练模型 此外,我们还在添加了预训练模型 与原始Pensieve模型相比,该模型的平均QoE提高了7.03%(0.924-> 0.989)。 如果您有任何疑问,请随时告诉我。 [1] Mao H,Netravali R,Alizadeh M.带自适应神经网络自适应视频流[C] // ACM数据
2023-02-16 13:49:26 2.71MB reinforcement-learning dqn pensieve ppo
1
超级马里奥兄弟的深度强化学习 描述 背景信息:超级马里奥兄弟(SMB)是一款流行的动作游戏,具有“真实的”环境和广阔的状态空间,是设计可玩计算机游戏的强化学习代理的理想平台。 该代理要求与世界上的各种对象和障碍进行交互,以鼓励采用知识丰富的学习方法。 方法-我们使用了OpenAI Gym提供的框架。 超级马里奥兄弟体育馆并从游戏环境中提取了信息,以使用PPO训练RL特工。 我们还向环境引入了预处理方法,例如帧缩放,随机跳帧,帧堆叠和噪声网,以提高代理的性能。 通过引入回滚操作来提高训练的稳定性,可以创建PPO的变体。 结果:该方法成功地训练了能够在20个小时的训练后完成水平的特工。 我们成功实现了一种方法,该方法可以比常规PPO实施更好地执行,在不应用数据预处理的情况下性能提高了50%,在应用数据预处理的情况下性能提高了10%。 工具 Pytorch已被用作主要的机器学习库 由于SMB
2022-11-09 22:52:04 18.11MB reinforcement-learning Python
1
策略梯度算法PPO+代码解读
2022-10-17 13:05:45 842KB 强化学习 PPO
1
AI-奥林匹克·相扑比赛基于规则的智能体和基于强化学习的智能体解决方案,该方案训练出的智能体能进入对战排行榜前十。基于代码实现的规则,能进入排行榜前三。 1 手动提取特征(manual feature extraction) 2 重新封装环境 3 训练表现
2022-10-16 22:08:12 7.81MB 强化学习 AI-奥林匹克 相扑比赛 PPO
1
pytorch-trpo PyTorch实施香草政策梯度,截断的自然政策梯度,信任区政策优化,近端政策优化 火车 算法:PG,NPG,TRPO,PPO env :Ant-v2,HalfCheetah-v2,Hopper-v2,Humanoid-v2,HumanoidStandup-v2,InvertedPendulum-v2,Reacher-v2,Swimmer-v2,Walker2d-v2 python train.py --algorithm "algorithm name" --env "environment name" 参考 此代码是代码的修改版本
2022-08-10 18:13:52 10KB Python
1
pytorch-a2c-ppo-acktr请使用本自述文件中的超级参数。 使用其他超级参数,可能无法正常工作(毕竟是RL)! 这是Advantage Actor Critic(A2C)的PyTorch实现,同步pytorch-a2c-ppo-acktr请使用本自述文件中的超级参数。 使用其他超级参数,可能无法正常工作(毕竟是RL)! 这是Advantage Actor Critic(A2C)的PyTorch实现,这是A3C近端策略优化PPO的同步确定性版本,用于使用Kronecker因子近似ACKTR生成的对抗模仿学习GAIL进行深度强化学习的可扩展信任区域方法另请参阅OpenAI帖子:A2C / ACKTR和PPO获得更多信息
2022-05-26 11:38:01 8.53MB Python Deep Learning
1