针对传统PID整定控制效果差且单纯神经网络整定存在参数学习和调整困难等问题,提出了一种基于改进模糊神经网络的PID参数整定方法。在该方法中,PID控制器的控制参数采用基于Mamdani模型的模糊神经网络进行自适应整定,模糊神经网络参数采用混沌遗传算法离线粗调和BP算法在线细调的方式进行学习和调整,仿真结果表明该整定策略动态响应快、误差控制精度高且网络中各节点及参数物理意义明确。最后分别从模糊规则数的变化及适应度函数的选取两方面提出两种优化方案,仿真结果表明增加模糊规则数或采用不同的适应度函数都有利于进一步减小控制误差。
1