本文实例为大家分享了python实现多层感知器MLP的具体代码,供大家参考,具体内容如下 1、加载必要的库,生成数据集 import math import random import matplotlib.pyplot as plt import numpy as np class moon_data_class(object): def __init__(self,N,d,r,w): self.N=N self.w=w self.d=d self.r=r def sgn(self,x): if(x>0): return 1;
2024-12-18 23:08:06 65KB python python算法 多层感知器
1
人工智能(Artificial Intelligence,简称AI)是一种前沿的计算机科学技术,其核心目标是通过模拟、延伸和拓展人类智能来构建智能机器与系统。它融合了计算机科学、数学、统计学、心理学、神经科学等多个学科的知识,并利用深度学习、机器学习等算法,使计算机能够从数据中学习、理解和推断。 在实际应用中,人工智能体现在诸多领域:如机器人技术,其中机器人不仅能执行预设任务,还能通过感知环境自主决策;语言识别和语音助手技术,如Siri或小爱同学,它们能理解并回应用户的语音指令;图像识别技术,在安防监控、自动驾驶等领域实现对视觉信息的精准分析;自然语言处理技术,应用于搜索引擎、智能客服及社交媒体的情感分析等。 此外,专家系统能够在特定领域提供专业级建议,物联网中的智能设备借助AI优化资源分配与操作效率。人工智能的发展不断改变着我们的生活方式,从工作场景到日常生活,智能化正以前所未有的方式提升生产力、便捷性和生活质量,同时也在挑战伦理边界与社会规则,促使我们重新审视人与技术的关系及其长远影响。
2024-10-19 19:09:31 4.15MB 人工智能 ai python
1
机器学习多层感知器实践完整源代码,MLP识别MNIST手写数字数据集(Pytorch)
2024-03-29 16:35:48 22.52MB pytorch 数据集 MNIST 机器学习
1
是用于高光谱遥感影像分类的机器学习脚本,其中使用了MLP算法(Multilayer Perceptron Algorithm)对Salinas数据集进行分类。 Salinas数据集是一个常用的高光谱遥感影像数据集,包含了来自13种不同作物和地物的224个像素。在你的Python脚本中,使用了MLP算法对这些像素进行分类。MLP算法是一种基于神经网络的分类算法,其通过多层神经元对特征进行抽象和表达,从而实现高效的分类。在该算法中,使用了反向传播算法对网络进行训练,以便调整网络中的权重和偏置,从而提高分类的准确性。
1
halcon机器视觉12-mlp-test.hdev
2023-12-02 11:10:41 4KB halcon机器视觉
1
halcon机器视觉12-mlp-test2.hdev
2023-12-02 11:10:26 3KB halcon机器视觉
1
在Pyrotch上实现情感分类模型,包含一个BERT 模型和一个分类器(MLP),两者间有一个dropout层。BERT模型实现了预训练参数加载功能,预训练的参数使用HuggingFace的bert_base_uncased模型。同时在代码中实现了基于预训练BERT模型的下游情感分类任务的fine_tune,包含了训练集上的训练、测试集上测试评估性能等内容。 情感分类的大致过程为:首先,将一个句子中的每个单词对应的词向量输入BERT,得到句子的向量表征。然后将句向量经过dropout层再输入分类器,最后输出二元分类预测。
2023-05-15 21:48:36 14KB 自然语言处理 pytorch bert finetune
1
使用 CNN-MLP 的音频分类 使用深度学习(CNN、MLP)的多类音频分类 引文 如果你觉得这个项目有帮助,请引用如下: @software{vishal_sharma_2020_3988690, author = {Vishal Sharma}, title = {{vishalshar/Audio-Classification-using-CNN-MLP: first release}}, month = Aug, year = 2020, publisher = {Zenodo}, version = {v1.0.0}, doi = {10.5281/zenodo.3988690}, url = {
2023-04-04 19:11:34 2.43MB audio classifier cnn audio-analysis
1
随着全球变暖,我们是时候进行预测全球温度,对未来进行预防。本实验运用了MLP与线性回归两种算法去预测未来全球温度,运用MSE和RMSE比较两种算法的准确性,并用matplotlib画出图像,对于数据集,我们对外网的全球温度数据进行了整理,对于缺失值,进行了删除(为了保证数据准确性,若不追求,也可以进行动态填充)。
2022-12-04 12:25:42 58KB 机器学习 python 线性回归 MLP
1
单变量时间序列预测开发深度学习模型_python源码+数据+超详细注释 内容: 多层感知器模型 卷积神经网络模型_CNN 递归神经网络模型_LSTM 递归神经网络模型_CNN+LSTM 递归神经网络模型_ConvLSTM2D 本文使用了5种不同的网络模型,实现了一元序列的自回归 1.MLP:多层感知机 2.CNN:卷积 3.LSTM:长短周期 4.CNN+LSTM卷积+长短周期 5.ConvLSTM2D卷积+长短周期 并且分别比较了5中模型的预测效果,CNN模型相对来时是最好的。 深度学习在一元时间序列预测中表现并不佳
2022-12-02 19:28:16 28KB MLP CNN LSTM ConvLSTM2D