细节增强的matlab代码DMFLDA2 这是一个深度学习框架,可通过整合线性和非线性特征来增强用于预测lncRNA-疾病关联的传统矩阵分解方法。 要求 tensorflow == 1.3.0 numpy == 1.11.2 scikit-learn == 0.18 scipy == 0.18.1 用法 在这个GitHub项目中,我们提供了一个演示来展示DMFLDA的工作原理。 在data_processing文件夹中,我们提供了我们在研究中使用的以下数据集。 lda_interMatrix.mat是具有matlab格式的原始lncRNA-疾病相互作用矩阵。 它的形状是577个lncRNA x 272种疾病。 matrix.npy是numpy格式的lncRNA-疾病相互作用矩阵。 data.pkl用于存储采样的正样本和负样本。 u_feature.npy是我们研究中使用的SVD技术的U矩阵,其形状为577x64。 v_feature.npy是我们研究中使用的SVD技术的V矩阵,其形状为272x64。 在我们的演示中,我们提供了留一法的交叉验证来评估我们的模型。 您可以使用cross_v
2022-07-01 16:04:49 864KB 系统开源
1
血清LncRNA MIR155HG 对冠心病患者PCI 后冠状动脉再狭窄的预测价值.pdf
2022-04-17 17:00:29 890KB 技术文档
适合生物信息学
2021-06-29 09:04:40 1.25MB lncRNA
1