[{"title":"( 18 个子文件 864KB ) 细节增强的matlab代码-DMFLDA2:这是一个深度学习框架,可通过整合线性和非线性特征来增强用于预测lncRNA-疾病关联的传统矩阵分解","children":[{"title":"DMFLDA2-master","children":[{"title":"LOOCV","children":[{"title":"roc.py <span style='color:#111;'> 2.56KB </span>","children":null,"spread":false},{"title":"data_input_cv.py <span style='color:#111;'> 2.68KB </span>","children":null,"spread":false},{"title":"cross_validation.py <span style='color:#111;'> 4.59KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 60B </span>","children":null,"spread":false},{"title":"DMF_model_cv.py <span style='color:#111;'> 4.79KB </span>","children":null,"spread":false}],"spread":true},{"title":"hyperparams.py <span style='color:#111;'> 545B </span>","children":null,"spread":false},{"title":"data_processing","children":[{"title":"matrix_svd.py <span style='color:#111;'> 1.01KB </span>","children":null,"spread":false},{"title":"v_feature.npy <span style='color:#111;'> 136.13KB </span>","children":null,"spread":false},{"title":"lda_interMatrix.mat <span style='color:#111;'> 3.57KB </span>","children":null,"spread":false},{"title":"read_mat.py <span style='color:#111;'> 733B </span>","children":null,"spread":false},{"title":"matrix.npy <span style='color:#111;'> 153.39KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 60B </span>","children":null,"spread":false},{"title":"data.pkl <span style='color:#111;'> 1.89MB </span>","children":null,"spread":false},{"title":"disease.txt <span style='color:#111;'> 7.20KB </span>","children":null,"spread":false},{"title":"u_feature.npy <span style='color:#111;'> 288.63KB </span>","children":null,"spread":false},{"title":"lncRNA.txt <span style='color:#111;'> 8.61KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false},{"title":"LICENSE.txt <span style='color:#111;'> 1.06KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]