Chinese-Text-Classification-Pytorch-master。 数据齐全,说明文档详细。点击即用! # 训练并测试: # TextCNN python run.py --model TextCNN # TextRNN python run.py --model TextRNN # TextRNN_Att python run.py --model TextRNN_Att # TextRCNN python run.py --model TextRCNN # FastText, embedding层是随机初始化的 python run.py --model FastText --embedding random # DPCNN python run.py --model DPCNN # Transformer python run.py --model Transformer
2023-03-20 10:32:05 15.94MB Chinese-Text-Cla
1
Bert-Chinese-Text-Classification-Pytorch 中文文本分类,Bert,ERNIE,基于pytorch,开箱即用。 介绍 模型介绍、数据流动过程:还没写完,写好之后再贴博客地址。 工作忙,懒得写了,类似文章有很多。 机器:一块2080Ti , 训练时间:30分钟。 环境 python 3.7 pytorch 1.1 tqdm sklearn tensorboardX pytorch_pretrained_bert(预训练代码也上传了, 不需要这个库了) 中文数据集 我从中抽取了20万条新闻标题,已上传至github,文本长度在20到30之间。一共10个类别,每类2万条。数据以字为单位输入模型。 类别:财经、房产、股票、教育、科技、社会、时政、体育、游戏、娱乐。 数据集划分: 数据集 数据量 训练集 18万 验证集 1万 测试集 1万 更换自己的数据集 按照
2021-05-27 22:00:01 6.11MB 附件源码 文章源码
1
TextCNN Pytorch实现中文文本分类 论文 参考 依赖项 python3.5 pytorch == 1.0.0 torchtext == 0.3.1 jieba == 0.39 词向量 (这里用的是Zhihu_QA知乎问答训练出来的单词Word2vec) 用法 python3 main.py -h 训练 python3 main.py 准确率 CNN-rand随机初始化嵌入 python main.py Batch[1800] - loss: 0.009499 acc: 100.0000%(128/128) Evaluation - loss: 0.0000
1