假新闻挑战 这是NLP课程的最终项目。 我们的工作包括以下几个部分: 数据预处理 常规机器学习方法 Seq2seq注意模型 TextCNN和暹罗网络 其他(例如比赛中的相关工作,未来的工作) 1.数据预处理 我们提供了几种数据预处理方法:BoW(单词袋),TF-IDF,word2vec,doc2vec。 每个py文件都会生成x_1(文档表示形式)x_2(标题表示形式)和y(标签)。 这些数据可以作为间谍数据输出,可以在模型中使用。 2.常规机器学习 我们提供py文件以通过常规机器学习(例如SVM,随机森林)对实例进行分类,代码在sklearn上实现。 环境要求:sklearn numpy 3. Seq2seq注意模型 这些代码通常基于一个带有预训练模型的基于注意力的序列到序列模型( )。 要使用代码生成文本摘要。 运行:python3 run_summarization.py -
1
文字cnn 该代码实现了模型的。 图1:用于句子分类的CNN架构图 要求 Python 3.6 TensorFlow 1.4 (Singleton Config) tqdm 要求 项目结构 通过初始化项目 . ├── config # Config files (.yml, .json) using with hb-config ├── data # dataset path ├── notebooks # Prototyping with numpy or tf.interact
2021-11-27 14:47:41 2.44MB nlp deep-learning sentiment-analysis tensorflow
1
TextCNN Pytorch实现中文文本分类 论文 参考 依赖项 python3.5 pytorch == 1.0.0 torchtext == 0.3.1 jieba == 0.39 词向量 (这里用的是Zhihu_QA知乎问答训练出来的单词Word2vec) 用法 python3 main.py -h 训练 python3 main.py 准确率 CNN-rand随机初始化嵌入 python main.py Batch[1800] - loss: 0.009499 acc: 100.0000%(128/128) Evaluation - loss: 0.0000
1
使用CNN和Word2vec进行文本分类 本文是参考gaussic大牛的“ text-classification-cnn-rnn”后,基于同样的数据集,嵌入词级别操作的CNN文本分类实验结果,gaussic大牛是基于字符级的;进行了第二版的更新:1。加入不同的卷积核; 2。加入正则化; 3。词唯一的中文或英文,删除掉文本中数字,符号等类型的词; 4。删除长度为1的词训练结果较第一版有所提升,验证集准确率从96.5%达到97.1%,测试准确率从96.7%达到97.2%。 本实验的主要目是为了探索基于Word2vec训练的词向量嵌入CNN后,对模型的影响,实验结果得到的模型在验证集达到97.1%
2021-03-11 19:01:08 15.65MB text-classification tensorflow word2vec cnn
1
基于卷积神经网络处理中文文本分类
2019-12-21 18:58:15 20KB cnn 中文文本分类
1