癌症是导致人类死亡的众所周知的疾病,乳腺癌(BC)是女性诊断出的癌症之一。 一生中大约有八名女性被诊断出患有BC。 如果尽早诊断出BC,可以很容易地进行治疗。 这项研究的方法是通过不同的机器学习(ML)技术来识别患有BC或不患有BC的患者。 在这项研究中,威斯康星州诊断性乳腺癌(WDBC)数据集将通过支持向量机(SVM),k最近邻(k-NN),朴素贝叶斯(NB),决策树(DT)和逻辑回归(LR)进行分类)。 分类之前有一个预处理阶段,其中五个不同的分类器应用了5倍交叉验证方法。 分类性能是通过使用混淆量度通过性能测量参数(即准确性,敏感性和特异性)来测量的。 在这项研究中,SVM在归一化过程后发现的最佳性能为99.12%的精度。
2022-05-21 16:38:44 544KB Breast Cancer WDBC SVM
1
字段中包含mean的代表平均值,包含se的代表标准差(standard error),包含worst代表最大值(3个最大值的平均值)。每张图像都计算了相应的特征,得出了这30个特征值。(实际上是10个特征值的3个维度:平均、标准差、最大值)。 这些特征值都保留了4位数字。字段中没有缺失的值。在整个569个患者中,一共有357个是良性,212个是恶性
2021-09-15 13:36:03 123KB 数据集
1
Logistic回归 威斯康星州诊断性乳腺癌(WDBC)数据集的Logistic回归
2021-09-13 20:43:05 111KB JupyterNotebook
1