毕业设计基于Bert_Position_BiLSTM_Attention_CRF_LSTMDecoder的法律文书要素识别.

上传者: 65898266 | 上传时间: 2025-12-19 22:38:19 | 文件大小: 627KB | 文件类型: ZIP
在本毕业设计中,主要研究的是利用深度学习技术来实现法律文书要素的自动识别。法律文书要素识别是一项关键任务,它对于法律领域的信息提取、文本分析以及自动化处理具有重要意义。设计采用了一种综合模型,结合了Bert、Position-BiLSTM、Attention机制以及CRF(条件随机场)和LSTM Decoder,旨在提升模型的性能和准确性。 Bert(Bidirectional Encoder Representations from Transformers)是谷歌提出的一种预训练语言模型,它通过在大规模无标注文本上进行自我监督学习,捕捉到了丰富的上下文信息。在法律文书要素识别中,Bert可以提供强大的语义理解能力,帮助模型理解和识别文书中的关键信息。 Position-BiLSTM(双向长短时记忆网络)用于处理序列数据,它可以同时考虑前向和后向的信息流,捕捉到文本中的长期依赖关系。在法律文书这种长文本场景中,BiLSTM能够有效地提取并整合上下文信息。 Attention机制则进一步增强了模型对重要信息的聚焦能力。在法律文书的要素识别中,某些关键词或短语可能对确定要素起决定性作用,Attention机制可以帮助模型专注于这些关键点,提高识别精度。 CRF(条件随机场)是一种常用的序列标注模型,它能考虑当前预测结果与前后标注的关联性,避免孤立地预测每个元素,从而提高整体的预测一致性。在法律文书要素识别中,CRF有助于确保各个要素标记的连贯性和合理性。 LSTM Decoder通常用于序列生成任务,如机器翻译,但在这种特定的分类任务中,它可能被用来对Bert、Position-BiLSTM和Attention的结果进行解码,生成最终的要素识别标签。 在Python环境下实现这个模型,可以利用TensorFlow、PyTorch等深度学习框架,结合Hugging Face的Transformers库来快速搭建Bert部分,再自定义其他组件。同时,还需要准备大量的法律文书数据集进行模型训练,数据预处理包括分词、标注等步骤。在训练过程中,可能需要用到各种优化策略,如学习率调度、早停法等,以达到更好的模型收敛。 这个毕业设计涵盖了自然语言处理中的多个重要技术,并将它们巧妙地融合在一起,以解决法律文书要素识别的挑战。通过这样的模型,可以大大提高法律工作者的工作效率,减少人工分析文书的时间成本,推动法律行业的智能化进程。

文件下载

资源详情

[{"title":"( 111 个子文件 627KB ) 毕业设计基于Bert_Position_BiLSTM_Attention_CRF_LSTMDecoder的法律文书要素识别.","children":[{"title":".coveragerc <span style='color:#111;'> 574B </span>","children":null,"spread":false},{"title":"theme.css <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":".flake8 <span style='color:#111;'> 266B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 1.23KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 11.07KB </span>","children":null,"spread":false},{"title":"language_embedding.md <span style='color:#111;'> 11.32KB </span>","children":null,"spread":false},{"title":"text_labeling_model.md <span style='color:#111;'> 8.60KB </span>","children":null,"spread":false},{"title":"text_classification_model.md <span style='color:#111;'> 7.31KB </span>","children":null,"spread":false},{"title":"home.md <span style='color:#111;'> 6.03KB </span>","children":null,"spread":false},{"title":"customize_multi_output_model.md <span style='color:#111;'> 3.92KB </span>","children":null,"spread":false},{"title":"deal_with_numeric_features.md <span style='color:#111;'> 3.27KB </span>","children":null,"spread":false},{"title":"CHANGELOG.md <span style='color:#111;'> 2.00KB </span>","children":null,"spread":false},{"title":"corpus.md <span style='color:#111;'> 1.86KB </span>","children":null,"spread":false},{"title":"tensorflow_serving.md <span style='color:#111;'> 1.43KB </span>","children":null,"spread":false},{"title":"CONTRIBUTING.md <span style='color:#111;'> 774B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 361B </span>","children":null,"spread":false},{"title":"readme.md <span style='color:#111;'> 114B </span>","children":null,"spread":false},{"title":"ner_f1_scores.png <span style='color:#111;'> 333.39KB </span>","children":null,"spread":false},{"title":"multi_feature_model.png <span style='color:#111;'> 130.45KB </span>","children":null,"spread":false},{"title":"img.png <span style='color:#111;'> 75.08KB </span>","children":null,"spread":false},{"title":"sonar-project.properties <span style='color:#111;'> 320B </span>","children":null,"spread":false},{"title":"models.py <span style='color:#111;'> 34.42KB </span>","children":null,"spread":false},{"title":"base_model.py <span style='color:#111;'> 25.60KB </span>","children":null,"spread":false},{"title":"models.py <span style='color:#111;'> 22.39KB </span>","children":null,"spread":false},{"title":"Processing_ner.py <span style='color:#111;'> 11.33KB </span>","children":null,"spread":false},{"title":"LSTMDecoder.py <span style='color:#111;'> 8.82KB </span>","children":null,"spread":false},{"title":"gpt_2_embedding.py <span style='color:#111;'> 8.60KB </span>","children":null,"spread":false},{"title":"corpus.py <span style='color:#111;'> 8.37KB </span>","children":null,"spread":false},{"title":"base_model.py <span style='color:#111;'> 8.25KB </span>","children":null,"spread":false},{"title":"bert_embedding.py <span style='color:#111;'> 7.92KB </span>","children":null,"spread":false},{"title":"base_embedding.py <span style='color:#111;'> 7.12KB </span>","children":null,"spread":false},{"title":"base_processor.py <span style='color:#111;'> 6.82KB </span>","children":null,"spread":false},{"title":"labeling_processor.py <span style='color:#111;'> 6.52KB </span>","children":null,"spread":false},{"title":"dpcnn_model.py <span style='color:#111;'> 6.04KB </span>","children":null,"spread":false},{"title":"crf.py <span style='color:#111;'> 5.50KB </span>","children":null,"spread":false},{"title":"test_bi_lstm.py <span style='color:#111;'> 5.20KB </span>","children":null,"spread":false},{"title":"word_embedding.py <span style='color:#111;'> 5.07KB </span>","children":null,"spread":false},{"title":"attention_layer1.py <span style='color:#111;'> 5.04KB </span>","children":null,"spread":false},{"title":"test_processor.py <span style='color:#111;'> 5.01KB </span>","children":null,"spread":false},{"title":"test_stacked_embedding.py <span style='color:#111;'> 4.99KB </span>","children":null,"spread":false},{"title":"test_custom_multi_output_classification.py <span style='color:#111;'> 4.80KB </span>","children":null,"spread":false},{"title":"base_model.py <span style='color:#111;'> 4.62KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 4.16KB </span>","children":null,"spread":false},{"title":"numeric_feature_embedding.py <span style='color:#111;'> 4.05KB </span>","children":null,"spread":false},{"title":"conf.py <span style='color:#111;'> 3.99KB </span>","children":null,"spread":false},{"title":"attention_layer.py <span style='color:#111;'> 3.98KB </span>","children":null,"spread":false},{"title":"stacked_embedding.py <span style='color:#111;'> 3.96KB </span>","children":null,"spread":false},{"title":"att_wgt_avg_layer.py <span style='color:#111;'> 3.38KB </span>","children":null,"spread":false},{"title":"test_bare_embedding.py <span style='color:#111;'> 3.34KB </span>","children":null,"spread":false},{"title":"attention_layer3.py <span style='color:#111;'> 3.28KB </span>","children":null,"spread":false},{"title":"classification_processor.py <span style='color:#111;'> 3.22KB </span>","children":null,"spread":false},{"title":"kmax_pool_layer.py <span style='color:#111;'> 3.18KB </span>","children":null,"spread":false},{"title":"position_attention_layer.py <span style='color:#111;'> 3.11KB </span>","children":null,"spread":false},{"title":"bert_attention5.py <span style='color:#111;'> 3.02KB </span>","children":null,"spread":false},{"title":"position_attention_layer1.py <span style='color:#111;'> 2.93KB </span>","children":null,"spread":false},{"title":"callbacks.py <span style='color:#111;'> 2.79KB </span>","children":null,"spread":false},{"title":"bert_attention4.py <span style='color:#111;'> 2.73KB </span>","children":null,"spread":false},{"title":"test_gpt2_embedding.py <span style='color:#111;'> 2.71KB </span>","children":null,"spread":false},{"title":"test_cnn_lstm_model.py <span style='color:#111;'> 2.66KB </span>","children":null,"spread":false},{"title":"callbacks_word.py <span style='color:#111;'> 2.55KB </span>","children":null,"spread":false},{"title":"bare_embedding.py <span style='color:#111;'> 2.53KB </span>","children":null,"spread":false},{"title":"Test1.py <span style='color:#111;'> 2.49KB </span>","children":null,"spread":false},{"title":"experimental.py <span style='color:#111;'> 2.48KB </span>","children":null,"spread":false},{"title":"bert_attention3.py <span style='color:#111;'> 2.45KB </span>","children":null,"spread":false},{"title":"setup.py <span style='color:#111;'> 2.30KB </span>","children":null,"spread":false},{"title":"Test2.py <span style='color:#111;'> 2.28KB </span>","children":null,"spread":false},{"title":"test_corpus.py <span style='color:#111;'> 2.22KB </span>","children":null,"spread":false},{"title":"test_word_embedding.py <span style='color:#111;'> 1.43KB </span>","children":null,"spread":false},{"title":"test_callbacks.py <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 1.21KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 1.19KB </span>","children":null,"spread":false},{"title":"test_bert_embedding.py <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false},{"title":"test_dpcnn.py <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"bert_attention.py <span style='color:#111;'> 944B </span>","children":null,"spread":false},{"title":"position_layer.py <span style='color:#111;'> 911B </span>","children":null,"spread":false},{"title":"non_masking_layer.py <span style='color:#111;'> 885B </span>","children":null,"spread":false},{"title":"restore.py <span style='color:#111;'> 877B </span>","children":null,"spread":false},{"title":"test_numeric_features_embedding.py <span style='color:#111;'> 763B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 735B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 684B </span>","children":null,"spread":false},{"title":"test_dropout_avrnn.py <span style='color:#111;'> 580B </span>","children":null,"spread":false},{"title":"test_dropout_bigru.py <span style='color:#111;'> 579B </span>","children":null,"spread":false},{"title":"test_blstm_attention_model.py <span style='color:#111;'> 565B </span>","children":null,"spread":false},{"title":"test_blstm_crf_model.py <span style='color:#111;'> 555B </span>","children":null,"spread":false},{"title":"test_bi_gru_crf_model.py <span style='color:#111;'> 555B </span>","children":null,"spread":false},{"title":"test_blstm_model.py <span style='color:#111;'> 554B </span>","children":null,"spread":false},{"title":"test_bi_gru_model.py <span style='color:#111;'> 552B </span>","children":null,"spread":false},{"title":"test_avrnn_model.py <span style='color:#111;'> 545B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 542B </span>","children":null,"spread":false},{"title":"test_avcnn.py <span style='color:#111;'> 540B </span>","children":null,"spread":false},{"title":"test_r_cnn.py <span style='color:#111;'> 539B </span>","children":null,"spread":false},{"title":"macros.py <span style='color:#111;'> 471B </span>","children":null,"spread":false},{"title":"test_kmax_cnn.py <span style='color:#111;'> 466B </span>","children":null,"spread":false},{"title":"test_cnn_lstm.py <span style='color:#111;'> 452B </span>","children":null,"spread":false},{"title":"test_cnn_gru.py <span style='color:#111;'> 449B </span>","children":null,"spread":false},{"title":"test_bi_gru.py <span style='color:#111;'> 444B </span>","children":null,"spread":false},{"title":"test_cnn.py <span style='color:#111;'> 437B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 298B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 275B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 200B </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明