对抗性鲁棒性工具箱(ART)v1.5 对抗性鲁棒性工具箱(ART)是用于机器学习安全性的Python库。 ART提供的工具使开发人员和研究人员可以针对逃避,中毒,提取和推理的对抗性威胁捍卫和评估机器学习模型和应用程序。 ART支持所有流行的机器学习框架(TensorFlow,Keras,PyTorch,MXNet,scikit-learn,XGBoost,LightGBM,CatBoost,GPy等),所有数据类型(图像,表格,音频,视频等)和机器学习任务(分类,对象检测,语音识别,生成,认证等)。 了解更多 --- ----- -, --- 该图书馆正在不断发展中。 欢迎反馈,错误报告和贡献
2022-06-22 17:30:56 34.94MB python deep-neural-networks attack scikit-learn
1
我在阅读论文《Feature Denoising for Improving Adversarial Robustness》的时候,对论文做了标注,其中加入了一些论文中提到的知识概念的补充,也包括我个人对论文中某一部分的理解。
2021-04-04 19:07:51 6.66MB AI Security Adversarial Attack
1
自动攻击 “可靠的评估对抗性鲁棒性与各种无参数攻击相结合” 弗朗切斯科·克鲁斯( Francesco Croce)和马蒂亚斯·海因( Matthias Hein) ICML 2020 我们建议使用四种不同攻击的组合来可靠地评估鲁棒性: APGD-CE ,这是我们在交叉熵方面的新的无步长PGD版本, APGD-DLR ,我们在新的DLR损失上推出的新的无步长PGD PGD版本, FAB ,将对抗性扰动的规范降到最低 , Square Attack ,一种查询效率高的黑盒攻击 。 注意:我们修复了攻击的所有超参数,因此不需要调整就可以测试每个新的分类器。 消息 [2020年10月] AutoAttack在新的基准测试用作标准评估,该基准包含最强大分类器的! 请注意,此页面和RobustBench的排行榜是同时维护的。 [2020年8月] 更新的版本:为了i)将AutoAtta
1