内容概要:本文档详细介绍了基于SABO-VMD-SVM的轴承故障诊断项目,旨在通过融合自适应块优化(SABO)、变分模式分解(VMD)和支持向量机(SVM)三种技术,构建一个高效、准确的故障诊断系统。项目背景强调了轴承故障诊断的重要性,特别是在现代制造业和能源产业中。文档详细描述了项目的目标、面临的挑战、创新点以及具体实施步骤,包括信号采集与预处理、VMD信号分解、SABO优化VMD参数、特征提取与选择、SVM分类和最终的故障诊断输出。此外,文档还展示了模型性能对比的效果预测图,并提供了部分MATLAB代码示例。 适合人群:具备一定编程基础,特别是对MATLAB有一定了解的研发人员或工程师,以及从事机械设备维护和故障诊断工作的技术人员。 使用场景及目标:①适用于需要对机械设备进行实时监测和故障预测的场景,如制造业、能源行业、交通运输、航天航空等;②目标是提高故障诊断的准确性,减少设备停机时间,降低维修成本,确保生产过程的安全性和稳定性。 阅读建议:由于项目涉及多步骤的技术实现和算法优化,建议读者在学习过程中结合理论知识与实际代码,逐步理解和实践每个环节,同时关注模型性能优化和实际应用场景的适配。
2025-06-02 14:49:27 36KB MATLAB VMD 轴承故障诊断
1
内容概要:本文介绍了一种新的优化算法——冠豪猪优化算法(CPO),并将其应用于变分模态分解(VMD)中,以优化VMD的参数。CPO算法通过模拟冠豪猪的觅食行为,在多维度、非线性和复杂问题的求解中表现出色。文中详细介绍了CPO-VMD的优化流程,包括初始化参数、选择适应度函数、运行CPO算法、执行VMD分解以及评估和选择最佳参数。实验部分展示了使用单列信号数据(如故障信号、风电等时间序列数据)进行的测试,验证了CPO-VMD方法的有效性。 适合人群:从事信号处理、故障诊断、风电等领域的研究人员和技术人员,尤其是对优化算法和VMD分解感兴趣的学者。 使用场景及目标:适用于需要对复杂信号进行有效分解和处理的场合,如故障检测、风力发电监控等。目标是通过优化VMD参数,提升信号处理的精度和效率。 其他说明:程序已在Matlab上调试完成,可以直接运行,仅需替换Excel数据。支持四种适应度函数(最小包络熵、最小样本熵、最小信息熵、最小排列熵),用于确定最佳的k和α参数。
2025-05-22 15:55:23 1.02MB
1
内容概要:本文详细介绍了利用MATLAB进行滚动轴承故障诊断的方法,主要采用了变分模态分解(VMD)算法与包络谱分析相结合的技术手段。首先,通过对西储大学提供的标准轴承数据进行预处理,设定适当的采样频率和VMD参数(如K值和alpha值),将复杂的振动信号分解为多个本征模态分量(IMF)。接着,选择合适的IMF分量进行希尔伯特变换并计算其包络谱,从而识别出潜在的故障特征频率。最后,通过比较理论计算的故障特征频率与实际测量所得的频谱峰值来确定具体的故障类型。 适合人群:从事机械设备维护、故障检测以及相关研究领域的工程师和技术人员。 使用场景及目标:适用于工业生产环境中对旋转机械特别是滚动轴承的健康监测和故障预警。能够帮助技术人员快速定位故障源,减少非计划停机时间,提高设备运行效率。 其他说明:文中还提供了详细的代码实例和参数调整建议,便于读者理解和应用。同时强调了一些常见的注意事项,如避免过度分解、正确设置采样频率等,确保诊断结果的有效性和可靠性。
2025-04-16 17:39:50 390KB
1
内容概要:本文详细介绍了利用MATLAB实现VMD-SSA-BiLSTM模型进行光伏功率预测的方法。首先,通过读取并预处理光伏数据,采用VMD(变分模态分解)将原始功率信号分解为多个较为稳定的模态分量。接着,针对每个分量建立BiLSTM模型,并使用SSA(麻雀搜索算法)优化模型的超参数。实验结果显示,相较于传统的BiLSTM模型,VMD-SSA-BiLSTM模型能够显著提高预测精度,特别是在处理功率突变的情况下表现更为出色。此外,文中还提供了关于如何更换分解算法、优化算法以及调整网络结构的具体指导。 适合人群:具有一定MATLAB编程基础和技术背景的研究人员或工程师,尤其是从事新能源领域数据分析工作的专业人士。 使用场景及目标:适用于需要精确预测光伏功率的应用场景,如电网调度和能源管理系统。主要目标是通过先进的信号处理技术和机器学习算法,提升光伏功率预测的准确性,从而更好地应对天气变化带来的不确定性。 其他说明:文中不仅分享了完整的代码实现细节,还讨论了一些常见的工程部署问题及解决方案,如数据预处理、模型训练效率等。对于希望深入理解并应用于实际项目的读者来说,是一份非常有价值的参考资料。
2025-04-11 20:38:20 688KB
1
Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-09-12 09:39:15 2.67MB matlab
1
复现了文献中的仿真信号实例,严格按照文献所述的方法进行代码分析,各个步骤的结果均可视化。(不包括复现轴承实验数据)
2024-05-20 14:55:47 5KB VMD 特征提取
实现变分模态分解,采用包络熵作为各模态分量的能量计算值
2024-05-18 14:26:03 4KB 变分模态分解 vmd
1
内容包括AOA,VMD,GRU单独的matlab 程序,以及AOA-VMD,AOA-VMD-GRU的程序,可以比较AOA-VMD,AOA-VMD-GRU准确度。
2023-12-06 18:58:37 3.78MB Matlab程序
1
基于VMD-Attention-LSTM的时间序列预测模型(代码仅使用了一个较小数据集的训练及预测,内含使用使用逻辑,适合初学者观看,模型结构是可行的,有能力的请尝试使用更大的数据集训练)
2023-11-27 16:48:52 5.26MB lstm VMD 时间序列预测 预测算法
1
从excel中读取信号,首先计算信号的vmd分解,得到imf分量,然后根据imf分量与原始信号的相关系数确定出信号imf喝噪声imf,对有用的imf进行小波阈值滤波,最后对滤波后的imf进行重构输出信号。 下图是流程图盒vmd分解结果的时域后频谱
2023-11-20 11:17:04 1.56MB 流程图
1