风电光伏预测中VMD-BKA-CNN-BiLSTM四模型对比的Matlab实现与应用

上传者: YoEwnXXcLzs | 上传时间: 2025-07-24 16:25:37 | 文件大小: 2.21MB | 文件类型: ZIP
内容概要:本文介绍了一套基于VMD(变分模态分解)、BKA(黑翅鸢优化算法)、CNN(卷积神经网络)和BiLSTM(双向长短期记忆网络)的四模型多变量时序预测框架及其Matlab实现方法。这套框架特别适用于风光发电预测这类多变量、非平稳的时间序列场景。文中详细讲解了每个模型的作用以及它们之间的协同方式,如VMD用于数据预处理,BKA用于优化CNN和BiLSTM的超参数,CNN负责提取空间特征,BiLSTM处理时间依赖关系。此外,还提供了具体的代码片段来展示如何进行数据预处理、模型构建、参数优化以及最终的结果对比。实验结果显示,相较于单一模型,集成模型能够显著提高预测性能,特别是在处理复杂变化的数据时表现更为出色。 适合人群:从事电力系统、新能源研究的专业人士,尤其是那些希望利用先进机器学习技术改进风光发电预测的研究人员和技术开发者。 使用场景及目标:该框架主要用于解决风光发电领域的时序预测问题,旨在帮助研究人员快速评估不同模型的效果,选择最适合特定任务的最佳模型配置。同时,也为学术写作提供了一个强有力的工具,因为其创新性的模型组合尚未广泛应用于相关文献中。 其他说明:文中提到的所有代码均可以在MATLAB环境中执行,并附有详细的注释以便于理解和修改。对于初学者来说,可以从简单的BiLSTM模型入手逐步深入理解整个系统的运作机制。

文件下载

资源详情

[{"title":"( 3 个子文件 2.21MB ) 风电光伏预测中VMD-BKA-CNN-BiLSTM四模型对比的Matlab实现与应用","children":[{"title":"风电光伏预测中VMD-BKA-CNN-BiLSTM四模型对比的Matlab实现与应用.pdf <span style='color:#111;'> 127.02KB </span>","children":null,"spread":false},{"title":"838327411029.html <span style='color:#111;'> 7.09MB </span>","children":null,"spread":false},{"title":"经典案例.md <span style='color:#111;'> 2.95KB </span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明