上传者: xiaoxingkongyuxi
|
上传时间: 2025-10-13 14:47:33
|
文件大小: 26KB
|
文件类型: DOCX
内容概要:本文介绍了一个基于VMD-NRBO-Transformer-TCN的多变量时间序列光伏功率预测项目。通过变分模态分解(VMD)对原始光伏数据进行去噪和多尺度分解,提取平稳子信号;结合Transformer的自注意力机制捕获长距离依赖关系,利用时序卷积网络(TCN)提取局部时序特征;并引入牛顿-拉夫逊优化算法(NRBO)对模型超参数进行高效优化,提升训练速度与预测精度。整体模型实现了对复杂、非线性、多变量光伏功率数据的高精度预测,具备良好的鲁棒性与稳定性。文中还提供了部分Python代码示例,涵盖VMD实现和Transformer-TCN网络结构定义。;
适合人群:具备一定机器学习与深度学习基础,从事新能源预测、时间序列建模或智能电网相关研究的研究生、科研人员及工程技术人员;熟悉Python和PyTorch框架者更佳;
使用场景及目标:①应用于光伏发电系统的短期与中期功率预测,支持电网调度与储能管理;②作为多变量时间序列预测的高级案例,用于研究VMD、Transformer、TCN融合模型的设计与优化方法;③探索NRBO等数值优化算法在深度学习超参数调优中的实际应用;
阅读建议:建议读者结合代码与模型架构图逐步理解各模块功能,重点掌握VMD信号分解、Transformer与TCN的特征融合机制以及NRBO优化策略的集成方式,可自行复现模型并在真实光伏数据集上验证性能。