数字多道脉冲幅度分析器(Digital Multi-Channel Analyzer, DMCA) 是一种用于核辐射探测与信号处理的关键设备,主要用于分析探测器输出的脉冲幅度分布。它通过高精度模数转换器(ADC)对脉冲信号进行数字化采样,并利用FPGA对数据进行实时处理,生成能谱图。工程主要包括AD采集控制模块、梯形成形算法模块、峰值提取模块、双口RAM谱线生成模块 、命令解析模块和上位机数据接口传输模块。本工程移植性非常好,只用到锁相环和双口RAM IP核,可轻松移植兼容XILINX和ALTERA等FPGA平台,工程经过反复验证,适合核电子学研究生、核电子学工程师、FPGA工程师等研究学习使用和拓展二次开发。在这里你将详细学到FPGA内部结构资源逻辑知识、数字信号处理知识、FPGA接口知识和完整的FPGA项目开发流程等。本工程使用AD9226高速ADC和FPGA实现数字多道脉冲幅度分析器的功能。
2025-04-26 11:39:16 897B fpga开发 编程语言
1
图 10.14定义轮轨变量 图 10.15 简单转向架模型示意图 实际上这仅仅是一个转向架雏形,作为一个以铁路模块闻名的 SIMPACK,它提供了许多有效的方 法建立更为复杂的铁路系统。本例的建模类型相对比较简单,这主要是为了便于读者理解和体会 SIMPACK 是如何工作的。具体的铁路模块如何建模和高效工作会在后面的高级教程铁路模块中详细论 述。
2025-04-23 11:30:03 8.04MB simpack
1
一些Verilog HDL代码在我的EE实验室的FPGA板上的16x16 LED上显示4个中文单词。 ##细节 tanxiaofengsheng.v存储16x16编码数据。 scroll.v控制4个单词scroll.v滚动。 display.v扫描LED以显示单词。 wallace_top.v是顶层模块。
2025-04-22 21:24:42 6KB Verilog
1
雷尼绍BISS-C协议编码器Verilog源码:灵活适配多路非标配置,高效率CRC并行计算,实现高速FPGA移植部署,雷尼绍BISS-C协议Verilog源码:多路高配置编码器,支持灵活时钟频率与并行CRC计算,雷尼绍BISS-C协议编码器verilog源码,支持18 26 32 36bit配置(也可以方便改成其他非标配置),支持最高10M时钟频率,由于是用FPGA纯verilog编写, 1)方便移植部署 2)可以支持多路编码器同时读取 3)成功在板卡跑通 4)CRC并行计算,只需要一个时钟周期 ,雷尼绍BISS-C协议;Verilog源码;18-36bit配置支持;方便移植部署;多路编码器支持;板卡验证通过;CRC并行计算。,雷尼绍BISS-C协议Verilog编码器源码:多路高配速CRC并行计算
2025-04-22 20:44:57 1.49MB
1
内容概要:本文详细介绍了如何使用Verilog语言在FPGA上实现UART通信,解析来自上位机的数据包,并完成数据存储和调用。文中首先分析了数据包的结构,包括帧头、命令、数据长度、数据、CRC校验和帧尾。接着,通过三段式状态机的设计,逐步讲解了状态定义、状态转移逻辑、数据存储和调用的具体实现方法。针对可能出现的帧头、帧尾冲突问题,引入了字符转义机制,并详细解释了CRC校验的实现方式。此外,还讨论了错误处理机制,确保在检测到异常时能够及时向上位机反馈错误信息。最后,提供了完整的工程文件和仿真环境,帮助开发者更好地理解和验证设计。 适合人群:具备一定硬件开发基础,尤其是熟悉FPGA和Verilog语言的研发人员。 使用场景及目标:适用于需要进行FPGA与上位机通信的工程项目,旨在提高数据包解析的准确性,确保通信的可靠性和稳定性。通过学习本文,读者可以掌握UART通信协议的实现细节,理解状态机在协议解析中的应用,提升嵌入式系统的开发能力。 阅读建议:本文不仅提供了详细的代码实现,还包含了丰富的背景知识和技术细节。建议读者在阅读过程中结合提供的工程文件和仿真工具进行实践,以便更好地理解每一个步骤和概念。
2025-04-17 15:46:24 133KB
1
内容概要:本文详细介绍了如何在FPGA上实现自适应陷波器,用于消除特定频率的干扰信号。核心算法采用了LMS(最小均方)自适应算法,通过Verilog代码实现了滤波器系数的动态更新。文中展示了具体的Verilog代码片段,涵盖了LMS算法模块、滤波器计算、时钟管理和仿真测试等方面。此外,还讨论了常见的实现难点和技术细节,如时序收敛、资源优化、定点数溢出处理等。通过ModelSim进行仿真实验,验证了系统的自适应能力和降噪效果。 适合人群:具备一定FPGA开发经验和Verilog编程基础的工程师,以及从事信号处理领域的研究人员。 使用场景及目标:适用于需要实时消除特定频率干扰的应用场合,如心电图检测中的工频干扰抑制、无人机飞控中的电机振动噪声隔离等。目标是提高信号质量,增强系统的鲁棒性和可靠性。 其他说明:附带完整的Quartus工程文件和ModelSim仿真报告,提供了详细的代码注释和调试建议。
2025-04-12 19:36:06 610KB FPGA Verilog ModelSim LMS算法
1
AES算法Verilog实现:纯代码、参考软件、Vivado工程与多媒体资源综合指南,AES算法的Verilog实现与解析:从纯代码到Vivado工程化全套实践,AES算法Verilog实现 [1]纯verilog代码实现 [2]提供参考软件代码(无需依赖库) [3]提供完整vivado工程 提供视频 提供幻灯片 ,AES算法Verilog实现; 纯Verilog代码; 参考软件代码; 完整Vivado工程; 视频; 幻灯片,AES算法纯Verilog实现与Vivado工程示例 AES算法,全称为高级加密标准(Advanced Encryption Standard),是美国国家标准与技术研究院(NIST)在2001年11月26日发布的一种对称密钥加密算法,用以替代原先的DES算法。它被广泛应用于商业和政府数据加密,在确保数据安全方面发挥着重要作用。AES算法支持128、192和256位三种密钥长度,并且能够以128位(16字节)为单元对数据进行块加密处理。 Verilog是一种硬件描述语言(HDL),用于电子系统的建模和设计。它是通过描述系统在不同抽象层次上的结构和行为来实现的。在数字电路设计中,Verilog被用来编写测试台(testbench)、模拟、综合到可编程逻辑设备(如FPGA或ASIC)的代码。 本指南提供了AES算法的Verilog实现,涵盖了从纯Verilog代码到Vivado工程的全套实践。Vivado是赛灵思(Xilinx)公司推出的一款设计套件,支持逻辑设计、IP生成、系统集成以及从设计到实现的完整流程。在这个过程中,工程师可以使用Vivado工程化地进行设计的完整生命周期管理。 本指南包含的纯Verilog代码实现了AES算法的基本功能,而参考软件代码部分则是不需要依赖任何外部库就可以直接运行的代码,这为使用者提供了一个易于理解的参考。指南还提供了一个完整的Vivado工程,这意味着所有必要的文件和配置都已经被准备好了,用户可以直接在Vivado环境中加载、运行和调试。 在学习材料中,还包含了一些多媒体资源,例如视频和幻灯片。这些资源可以帮助学习者更好地理解AES算法以及其在Verilog中的实现。视频演示可以直观展示算法运行过程和设计的最终效果,而幻灯片则可以提供结构化的知识体系,帮助学习者系统地掌握信息。 为了更好地支持数字技术的飞速发展和在不同平台上的数据安全,本指南中的AES算法实现采用了对称加密的方式。对称加密指的是加密和解密使用同一把密钥,这样的设计在保证数据安全的同时,也提升了加密解密的效率。 在文档结构方面,本指南通过多篇引言和引言段落逐步引入了算法实现的主题,为读者铺垫了背景知识,并清晰地定义了算法实现的内容和范畴。同时,它还通过文章标题和相关的HTML文件指明了文档的组织方式,以及如何通过互联网获取更多的信息。 整个指南的编写旨在为工程师、学生或任何对AES算法在Verilog中实现感兴趣的人提供一个全面的资源集合。无论是在教育环境中作为学习材料,还是在商业项目中作为参考,本指南都能够发挥其价值。通过对AES算法的Verilog实现进行详细解析,并提供从纯代码到工程化实践的全过程指导,本指南为数字电路设计和安全通信领域贡献了一份力量。
2025-04-12 12:49:51 2.36MB
1
此模块负责生成WM8731所需要的位时钟和左右声道区分时钟。对于此模块产生左右声道区分时钟时,要注意左对齐模式16位音频数据的最高位先接收,且最高位在位时钟第一个上升沿到来就能用,然后还需注意接收完16位音频数据后,位时钟还预留了三个周期才开始接收下个16位音频数据。左对齐模式如图3所示。这里还有I2S格式、右对齐模式都是可以用的,只是在用的时候要注意时序图上面的区别,编写出正确的时钟,不然音乐效果不好,会有噪声。
2025-04-11 21:27:43 1024B WM8731 verilog 音乐播放器 FPGA
1
内容概要:本文详细介绍了如何利用FPGA实现直流电机的调速系统。首先解释了选择FPGA的原因,强调其硬件并行特性的优势,如更快的响应时间和更高的稳定性。接着展示了PWM波形生成的具体Verilog代码,确保占空比更新时不产生毛刺。然后讨论了电机驱动中的注意事项,特别是死区时间的硬件实现,以避免MOS管损坏。接下来深入探讨了增量式PID控制的实现方法,包括状态机的设计和积分项的限幅处理。最后,通过实验验证了系统的性能,展示了其实现的快速响应和平滑调速效果。 适合人群:对嵌入式系统和电机控制有一定了解的工程师和技术爱好者。 使用场景及目标:适用于需要高性能电机调速的应用场合,如工业自动化、机器人等领域。目标是通过FPGA的并行处理能力,提高电机调速系统的响应速度和稳定性。 其他说明:文中提供了详细的Verilog代码片段和调试技巧,帮助读者更好地理解和实现FPGA在电机控制系统中的应用。
2025-04-11 19:10:27 607KB FPGA Verilog PID控制 PWM
1
边缘检测用于确定图像中的边缘,是图像处理中的一个核心技术,主要用于识别和分析图像中的边缘信息。本设计基于MP801开发板实现了对任意图片的边缘检测线条显示。本设计由图像灰度化处理、中值滤波、图像边缘采样、边缘线条显示四部分组成。 图像灰度化参考matlab中提供的rgb2gary灰度化处理函数,把颜色数据转化为8位的灰度数据之后存入移位寄存器中。将移位寄存器中的数据进行中值滤波可以达到减少噪声,同时保留边缘信息的目的。其中边缘线条显示使用的是VGA接口驱动的方式显示。 在现代图像处理技术中,边缘检测是提取图像特征、分析图像结构以及识别图像内容的关键步骤。通过边缘检测算法,可以从图像中提取出对象的边缘,这些边缘往往是图像特征的重要组成部分。本文档描述了如何利用现场可编程门阵列(Field Programmable Gate Array,简称FPGA)来实现图像边缘检测算法,并且提供了一种基于MP801开发板的具体实现方法。 图像边缘检测算法的实现过程主要分为四个部分:图像灰度化处理、中值滤波、图像边缘采样和边缘线条显示。图像灰度化处理是将彩色图像转换为灰度图像的过程。在这一阶段,原有的RGB彩色模型被转换为灰度模型,每一点像素仅用一个亮度值来表示。灰度化后的图像信息量相对较小,便于后续处理。在本设计中,参考了matlab提供的rgb2gray灰度化处理函数,将颜色数据转化为8位的灰度数据,便于存储和进一步的算法处理。 中值滤波是一种非线性的信号处理技术,用于去除图像噪声,特别是在去除椒盐噪声方面效果显著。中值滤波通过对图像中的一个像素及其周围邻域内的像素进行排序,并取中间值作为滤波后的像素值,这样既去除了噪声,又较好地保留了图像的边缘信息。在本设计中,通过对移位寄存器中的数据进行中值滤波处理,实现了对图像噪声的抑制,同时保证了边缘特征的完整性。 图像边缘采样是在滤波处理之后进行的。在此阶段,算法将利用一定的边缘检测算子来确定图像中边缘的位置。常见的边缘检测算子包括Sobel算子、Canny算子等。通过这些算子,可以计算出图像中每个像素点的梯度幅度,从而得到边缘信息。 边缘线条显示部分负责将检测到的边缘以可视化的方式呈现。本设计采用VGA接口驱动方式来显示边缘线条,使得在屏幕上可以直观地看到图像的边缘信息。VGA(Video Graphics Array)是一种视频传输标准,广泛用于计算机显示器,通过VGA接口可以实时显示图像处理的结果。 整个设计的实现基于MP801开发板,这是一块以FPGA为核心,专用于学习和开发的开发板。FPGA具有并行处理能力强、实时性高、可重复编程等特点,非常适合用于实现图像处理算法。而且,FPGA平台上的图像处理算法可以轻松达到实时处理的要求,这是其它通用处理器难以企及的优势。在本设计中,使用了Verilog硬件描述语言来编写FPGA上的边缘检测算法。Verilog是一种用于电子系统的硬件描述语言,非常适合用来描述FPGA上的逻辑电路和算法。 本文档详细介绍了利用FPGA和Verilog语言实现的图像边缘检测算法的设计过程。该设计不仅涉及到图像处理的基本概念和算法,也包括了硬件实现的细节,是图像处理与硬件开发相结合的典型应用实例。
2025-04-10 18:39:50 29.5MB FPGA Verilog
1