在电子设计领域,尤其是嵌入式系统开发中,通信接口的转换扮演着至关重要的角色。本文将详细讨论标题和描述中提及的几个关键组件:CP2105、CP2103、ADM2582,以及USB转UART、UART转隔离RS422的相关知识点,并提供Cadence原理图封装库和数据手册的相关信息。 让我们来看看CP2105和CP2103,这两款芯片是Silicon Labs(原名Cygnal)生产的一种高性能USB到UART桥接器。它们主要用于实现PC或其他USB设备与串行接口的通信。CP2105支持双UART通道,能够同时连接两个独立的UART设备,而CP2103则是一个单通道的版本。这些芯片内置了USB协议处理功能,可以简化USB到串行的转换,同时提供全速USB 1.1接口,数据传输速率可达12Mbps。 接下来是ADM2582,这是一款由Analog Devices生产的隔离式RS-422/RS-485收发器。RS-422和RS-485是工业标准的多点通信协议,适用于长距离、高噪声环境的数据传输。ADM2582提供了电气隔离,以保护系统免受可能的电压浪涌和地环路干扰,确保数据传输的可靠性和系统的稳定性。它支持最高20Mbps的数据速率,可以驱动多达32个接收器,是UART到隔离RS-422转换的理想选择。 在嵌入式硬件设计中,USB转UART模块常用于通过USB接口在线烧写STM32这样的微控制器。STM32是基于ARM Cortex-M内核的微控制器系列,广泛应用于各种嵌入式系统。通过USB转串口工具,开发者可以方便地使用如STLink、JLink等调试器进行程序下载和调试,而无需额外的物理接口。 数据手册和原理图封装库是设计过程中不可或缺的资源。数据手册详细描述了每个芯片的功能、引脚定义、电气特性、操作条件和应用电路等,为设计者提供了必要的设计指导。Cadence是业界广泛使用的电子设计自动化软件,其原理图封装库包含了各种元器件的图形表示,使得在原理图设计阶段可以直观地布局和连接电路。 总结来说,USB转UART芯片如CP2105和CP2103,以及隔离RS-422收发器ADM2582,在嵌入式硬件设计中起到桥梁作用,使PC能与串行设备如STM32进行有效通信。理解这些组件的工作原理和正确使用方法,对嵌入式系统的开发和调试至关重要。数据手册和Cadence封装库则是确保设计准确无误的关键参考资料。在实际项目中,结合这些知识,可以构建出稳定可靠的USB转串口和隔离RS-422通信解决方案。
2024-10-30 11:41:34 4.29MB stm32 arm 嵌入式硬件
1
硬件平台:STM32F4系列 程序设计:基于STM32HAL库,UART DMA方式接收与发送,串口数据缓存使用lwrb(FIFO),接收与发送的数据实现零拷贝,为了单片机使用效率,可以参考。 测试验证:上位机向两个串口进行1ms定时发送1024字节,百万数据量收发正常
2024-10-07 11:43:23 31.24MB stm32 UARTDMA FIFO UART
1
《S3C2440在Keil环境下裸机程序开发——聚焦UART串口通信》 S3C2440是一款由Samsung公司推出的高性能、低功耗的ARM920T内核微处理器,广泛应用于嵌入式系统设计。在进行基于S3C2440的裸机程序开发时,Keil μVision是一款常用的集成开发环境(IDE),它提供了强大的编译、调试工具,使得开发者能够高效地编写和测试代码。本文将深入探讨在Keil环境下针对S3C2440的裸机程序开发,尤其是关于UART(通用异步接收/发送器)串口通信的部分。 理解裸机程序的概念是关键。裸机程序是指不依赖任何操作系统,直接运行在硬件上的程序。在S3C2440上,这意味着我们需要直接操作处理器寄存器来初始化系统、配置外设,并实现基本功能。 UART是嵌入式系统中最常见的通信接口之一,用于设备间的串行通信。在S3C2440中,UART模块支持全双工通信,可以同时进行数据的发送和接收。为了使用UART,我们需要对相应的寄存器进行设置,包括波特率、数据位数、停止位和奇偶校验等参数。 在Keil环境下,我们首先需要创建一个新项目,选择对应的处理器模型(S3C2440)。然后,我们需要编写启动代码,这部分代码通常包括设置堆栈指针、初始化内存管理单元(MMU)、配置中断控制器等。 接下来,我们关注UART的初始化。在S3C2440的 datasheet 中,可以找到UART的相关寄存器,如UARTLCR(线路控制寄存器)、UARTFDR(分频因子寄存器)和UARTDLL(低波特率发生器寄存器)等。通过设置这些寄存器,我们可以设定波特率、数据格式和其他通信参数。例如,通过调整UARTFDR,可以实现精确的波特率设置。 在程序中,我们还需要实现发送和接收函数。发送函数一般会向UART的 THR(传输寄存器)写入数据,而接收函数则会检查RBR(接收寄存器)是否有新数据,并将其读取出来。同时,我们需要处理中断,当数据准备好或发送完成时,UART会触发中断,我们可以在中断服务程序中进行相应的处理。 为了测试UART功能,可以连接一个串口终端工具,如RealTerm或Putty,设置与UART相同的波特率、数据位数、停止位和校验位,然后在S3C2440上运行程序,通过串口发送和接收数据,观察是否正常通信。 总结来说,S3C2440在Keil下的裸机程序开发涉及了处理器寄存器的操作、中断系统的管理以及UART通信协议的实现。通过理解这些基本概念和技术,开发者可以为S3C2440构建各种定制化的嵌入式应用,而UART串口通信作为基础的外设接口,是嵌入式开发中的重要一环。在这个过程中,Keil μVision提供了强大的开发工具,使得整个流程更加便捷和高效。
2024-09-13 10:13:25 86KB S3C2440 keil uart
1
UART驱动在嵌入式系统开发中扮演着至关重要的角色,特别是在STM32F030/031这样的微控制器中。UART(通用异步收发传输器)是一种常见的通信接口,用于设备间的串行通信。STM32F030/031系列是意法半导体(STMicroelectronics)推出的一种基于ARM Cortex-M0内核的超低功耗微控制器,广泛应用于各种嵌入式项目中,包括物联网设备、传感器节点和小型控制器。 STM32F030/031内部集成了USART(通用同步/异步收发器),它是UART的一个增强版本,支持全双工通信,可以同时进行发送和接收数据。在基于STM32F030/031的项目中,通常需要编写自定义的UART驱动程序来充分利用这一功能,实现与其他设备的数据交换。 驱动开发主要包括以下关键步骤: 1. **配置GPIO**:我们需要配置与UART相关的GPIO引脚,比如TX(发送)和RX(接收)引脚。这些引脚需要设置为AF(alternate function,复用功能)模式,并选择相应的USART功能。 2. **配置USART**:接下来,需要设置USART的工作参数,如波特率、数据位数、停止位数和校验位。例如,常见的配置是9600bps的波特率、8位数据、1位停止位和无校验位。此外,还需要启用USART时钟并选择合适的时钟源。 3. **中断设置**:在STM32中,可以选择使用轮询模式或中断模式进行UART通信。"6.UART_TXpoll_RXinterrupt"这个文件名可能表示示例包含了两种模式。在轮询模式下,程序会不断检查USART状态,看是否有数据待发送或接收。而在中断模式下,当有数据可用或发送完成时,处理器会收到中断请求,这样可以提高系统的实时性。 4. **发送数据**:通过调用HAL_UART_Transmit()函数(如果使用了HAL库)或者直接操作寄存器,将数据写入USART的发送数据寄存器,然后等待发送完成。 5. **接收数据**:在轮询模式下,通过读取USART的接收数据寄存器获取接收到的数据;在中断模式下,需要在对应的中断服务程序中处理接收事件。 6. **错误处理**:对于可能发生的错误,如帧错误、溢出错误或奇偶校验错误,需要设置错误处理机制。这通常包括清除错误标志、记录错误日志或采取恢复措施。 7. **初始化和关闭**:编写初始化和关闭函数,以便在程序开始和结束时正确地配置和释放USART资源。 Wolf32F031自由评估板是一个用于开发和测试STM32F030/031的平台,它提供了必要的硬件接口和工具,使得开发者能够快速验证UART驱动的正确性和性能。 理解并实现一个有效的UART驱动涉及到对STM32微控制器的深入理解,包括GPIO、时钟系统、中断系统以及USART的工作原理。通过掌握这些知识,开发者可以灵活地设计各种基于STM32的串行通信应用。
2024-08-28 21:09:53 581KB STM32F03 USART 串口
1
MC96F8316M是一款由ABOV半导体公司生产的微控制器,它集成了多种功能,包括通用异步收发传输器(UART),适用于串行通信。在本项目中,我们关注的是如何利用该芯片的UART接口进行有效的通信控制。 UART是一种简单的串行通信协议,广泛应用于嵌入式系统和设备之间,它允许两个设备通过共享的两条线路进行全双工通信,即同时发送和接收数据。UART的核心组件包括发送器、接收器和一个串行到并行/并行到串行转换器,使得数据可以在并行和串行之间切换,从而实现与外部设备的数据交换。 在MC96F8316M芯片中,UART通信通常涉及以下几个关键配置步骤: 1. **波特率设置**:波特率决定了数据传输的速度,它是每秒传输的位数。根据应用需求,开发者需要设置合适的波特率,例如9600、115200等。在MC96F8316M的UART模块中,可以通过寄存器配置来设定。 2. **数据位、停止位和校验位**:数据位决定每个数据包包含的信息量,通常为5到9位。停止位用于标记数据帧的结束,通常为1或2位。校验位用于错误检测,可以是奇校验、偶校验或无校验。这些参数也需要在UART初始化时设置。 3. **中断处理**:MC96F8316M支持中断驱动的UART通信,这意味着当有新的数据到达或发送缓冲区为空时,CPU会收到中断请求,从而提高实时性。 4. **发送与接收函数**:在程序中,开发者需要编写发送和接收函数来与UART接口交互。发送函数将数据写入发送缓冲区,而接收函数则读取接收到的数据。 5. **流控制**:UART通信可能涉及到硬件或软件流控制,如CTS(清除发送)和RTS(请求发送)信号,以防止数据溢出。不过,这取决于具体的应用需求和MC96F8316M的配置。 "客户参考-MC96F8316-UART通讯-bit"这个文件可能是示例代码或文档,它包含了关于如何配置和使用MC96F8316M芯片UART的具体细节。参考这份资料,开发者可以了解如何正确设置UART参数,以及如何编写控制程序,以便在实际项目中实现稳定可靠的串行通信。 总结来说,MC96F8316M的UART通讯控制程序涉及了对芯片UART模块的配置,包括波特率、数据格式和中断设置,同时也需要编写对应的发送和接收函数。提供的客户参考文件是理解这一过程的关键,它可以帮助开发者快速上手并应用于实际项目开发。
2024-08-28 10:45:30 59KB ABOV芯片 UART通讯
1
UART DUT 介绍、验证功能点提取、UVM 验证代码介绍、Debug 过程和联调过程、覆盖率收集等 UART(Universal Asynchronous Receiver-Transmitter)是一种异步全双工串行通信协议,将要传输的数据在串行通信与并行通信之间进行转换。作为把并行输入信号转成串行输出信号的芯片,UART 通常被集成于其他通讯接口的连结上,其工作原理是将数据的二进制位一位一位地进行传输。 DUT(Device Under Test)功能理解:DUT design Spec 如左图所示,DUT 有两种执行方式,一种是对外围设备接收的数据进行串行到并行的转换(RX 方向);另一种是对传输到外围的数据进行并行到串行的转换(TX 方向)。 DUT 模块理解: 1. APB interface:实现接口信号的解码,用于访问状态,配置寄存器,接收,发送数据到 FIFO。 2. transmit FIFO:8 位宽,16 位深,用于存储从 APB interface 中写入的数据,直到数据被传输逻辑读走,该 FIFO 可以被 disable,使其成为单字节寄存器。 3. receive FIFO:12 位宽,16 位深,用于存储上行端接收的数据以及错误位信息,直到数据被 APB 接口读走,该 FIFO 可以被 disable,使其成为单字节寄存器。 4. transmitter:将传输 FIFO 中的数据实现并行到串行的转换。 5. receiver:将对外围设备数据进行串行到并向的转换,同时还会执行溢出,奇偶校验,frame 错误检测和中断检测,并将其写入到 receive FIFO。 6. 波特率发生器:包含自由运行的计数器,产生内部 x16 时钟和 Baud16 信号。Baud16 是 UART 发射和接收控制提供定时信息。 7. interrupt generation:该控制器在每个外围设备的基础上实现另一级别的屏蔽,这样,全局的中断服务例程可以从系统中断服务器中读取。 UARTLCR_H 寄存器内部宽 29 位,但外部通过 AMBA APB 总线通过三次写入寄存器位置 UARTLCR_H、UARTIBRD 和 UARTFBRD 进行访问。UARTLCR_H 定义了传输参数、字长、缓冲区模式、传输停止位数、奇偶校验模式和中断生成。 波特率配置:波特率除数是由 16 位整数和 6 位小数部分组成的 22 位数字。波特率生成器使用该值来确定位周期。波特率除数 = UARTCLK /(16xBaud Rate)= BRDI + BRDF,其中 BRDI 是整数部分,BRDF 是小数点分隔的小数部分小数 m = integer(BRDF*2^n + 0.5)生成内部时钟启用信号 Baud16,它是一个 UARTCLK 宽脉冲流,平均频率为所需波特率的 16 倍。然后将该信号除以 16,得到传输时钟。 数据传输和接收:对于传输,数据被写入传输 FIFO。如果 UART 已启用,则会导致数据帧开始使用 UARTLCR_H 中指定的参数进行传输。数据继续传输,直到传输 FIFO 中没有数据为止。一旦数据写入传输 FIFO(即 FIFO 非空),BUSY 信号就会变高,并在传输数据时保持高电平。只有当传输 FIFO 为空,并且最后一个字符(包括停止位)已从移位寄存器传输时,BUSY 才被否定。即使 UART 可能不再启用,也可以将 BUSY 断言为 HIGH。 当接收器空闲为 idle 时(UARTRXD 连续 1,处于标记状态)且在数据输入上检测到低电平(已接收到起始位)时,接收计数器(时钟由 Baud16 启用)开始运行,并在正常 UART 模式下在该计数器的第八个周期对数据进行采样。如果 UARTRXD 在 Baud16 的第八个周期上仍然处于低位,则起始位有效,否则会检测到错误的起始位并将其忽略。如果起始位有效,则根据数据字符的编程长度,在 Baud16 的每 16 个周期(即一个位周期之后)对连续数据位进行采样。如果启用了奇偶校验模式,则检查奇偶校验位。如果 UARTRXD 高,则确认有效的停止位,否则会发生帧错误。 UART 读写时序: * UART 读写时序图 * UART 数据帧格式 起始位:发送 1 位逻辑 0(低电平),开始传输数据。 数据位:可以是 5~8 位的数据,先发低位,再发高位,一般常见的就是 8 位(1 个字节),其他的如 7 位的 ASCII 码。 校验位:奇偶校验,将数据位加上校验位,1 的位数为偶数(偶校验),1 的位数为奇数(奇校验)。 停止位:停止位是数据传输结束的标志,可以是 1/2 位的逻辑 1(高电平)。 空闲位:空闲时数据线为高电平状态,代表无数据。 UVM 验证代码介绍: * UVM 验证环境搭建 * UVM 验证用例编写 * UVM 验证结果分析 Debug 过程和联调过程: * Debug 工具选择 * Debug 过程 * 联调过程 覆盖率收集: * 代码覆盖率收集 * 数据覆盖率收集 * FSM 覆盖率收集 通过对 UART DUT 的介绍、验证功能点提取、UVM 验证代码介绍、Debug 过程和联调过程、覆盖率收集等,我们可以更好地了解 UART 模块的工作原理和验证方法,并提高我们对 UART 模块的设计和验证能力。
2024-08-27 11:02:43 6.21MB uart
1
mcu:stm32f103VET6 导航模块:司南K8板卡(ATGM332D_GPS北斗双模定位模块也可参考) 要求:获取GPGGA和GPNTR语句中的时间、经纬度、解状态、垂直分量等数据。 程序编写:使用stm32f103的固件函数库(STM32F10x_StdPeriph_Lib_V3.5.0)编写,有清楚注释。 资源包含:项目文件,调试文档,代码说明,相关资料。 GPGGA和GPNTR语句的保存,看工程文件stm32f103ve_uart1_3.5.0_K8_1.rar 数据提取,看工程文件stm32f103ve_uart1_3.5.0_K8_5.rar
2024-08-09 16:58:26 12.56MB stm32
1
使用keil for arm 和proteus联调的适合飞利浦公司的LPC2124的串口通信UART的程序,自己测试过,保证能够运行
2024-07-24 19:20:13 90KB lpc2124
1
基于Intel(Altera)的Quartus II平台FPGA的任意字节数的UART(串口)发送工程源码: 1、详细的仿真TB文件; 2、单字节 起始位1bit,数据位8bit,停止位1bit,无奇偶校验; 3、通过参数化设置,可实现任意字节数的UART发送; 4、详细的说明文件请参考本人博文《https://wuzhikai.blog.csdn.net/article/details/126093301》。
2024-07-21 22:05:26 8.73MB UART FPGA intel
1
标题“LPC-ARM7-LED-串口实验-proteus仿真”涉及到的是基于ARM架构的LPC2138微控制器进行LED控制和串行通信的实践项目,结合了Proteus仿真软件来模拟电路运行。这个实验是学习嵌入式系统、微处理器编程以及硬件设计的一个好例子。 LPC2138是一款基于ARM7TDMI-S内核的微控制器,由NXP(前飞利浦半导体)制造。它拥有丰富的外设接口,包括UART(通用异步收发传输器),用于串行通信,以及GPIO(通用输入/输出)引脚,可用于控制LED灯的亮灭。在这个项目中,开发者将编写C或汇编语言代码来配置和操作这些硬件资源。 PLL(锁相环)初始化代码是设置微控制器工作频率的关键部分。LPC2138可以通过调整PLL的参数以提高内部时钟速度,从而提升系统的运行效率。正确的PLL配置可以确保微控制器的各个模块以期望的速度运行,比如UART和GPIO。 UART初始化涉及设置波特率、数据位、停止位、奇偶校验等参数,以确保与外部设备(如计算机或另一个微控制器)进行有效通信。在这个实验中,源码会包含设置UART的函数,以便发送简单数据。 然后,LED的控制是通过GPIO端口实现的。代码会包含对GPIO寄存器的操作,用以设置特定引脚为输出模式,并通过写入0或1来控制LED的亮灭。这通常是通过循环或条件语句来实现,以达到特定的闪烁效果。 Proteus是一个强大的电子设计自动化工具,可以模拟硬件电路,包括微控制器和外围设备。在这个实验中,LPC2138的电路图将在Proteus环境中搭建,而源码会在虚拟环境中运行,模拟LED灯的点亮和串口通信的过程。这为开发者提供了一个无需实际硬件就能测试代码的平台,降低了实验成本并提高了效率。 通过这个项目,学习者可以深入理解ARM微控制器的工作原理,掌握如何编写初始化代码,使用串口通信,以及如何通过软件控制硬件设备。同时,Proteus仿真的使用也能增强他们的硬件设计和调试技能。这个综合性的实验是嵌入式系统学习的重要组成部分,对于理解硬件和软件之间的交互具有重要意义。
2024-07-08 21:02:38 70KB ARM UART PROTEUS
1