1. 实验目的 理解LR语法分析方法的原理,设计相关数据结构和程序结构,加深对自下而上语法分析方法的理解。 2. 实验内容 需要实现的功能: 1)输入文法:文法描述存储在文本文件中,文件名作为命令行参数输入; 2)输入文法的分析表(Action表和Goto表):分析表数据存储在文本文件中,文件名作为命令行参数输入; 3)输入待分析的符号串:符号串存储在文本文件中,文件名作为命令行参数输入。 4)构造LR语法分析器的总控程序; 5)对待分析符号串,输出其是否该文法正确句子的判断,并输出文本形式的分析过程(标准输出设备)。 3. 实验要求 1)文法描述文件、LR分析表文件和符号串文件的格式参见文档《实验用文件结构.doc》; 2)使用《文法实验》、《LR0分析表的构造》、《LR1分析表的构造》实验的结果。 3)文法描述文件、LR分析表文件和符号串文件是3个不同的文本文件,都作为命令行参数进行输入,文法描述文件名是第1个参数,LR分析表文件名是第2个参数,符号串文件名是第3个参数。
2025-05-27 11:34:57 689KB 编译原理 LR语法分析器 实验报告
1
实验二:TINY扩充语言的语法分析 扩充的语法规则有:实现 while、do while、for语句和求余计算式子,具体文法规则自行构造。 可参考:P97及P136的文法规则。 (1) While-stmt --> while exp do stmt-sequence endwhile (2) Dowhile-stmt-->do stmt-sequence while exp (3) for-stmt-->for identifier:=simple-exp to simple-exp do stmt-sequence enddo 步长递增1 (4) for-stmt-->for identifier:=simple-exp downto simple-exp do stmt-sequence enddo 步长递减1 1.要求: (1)要提供一个源程序编辑界面,以让用户输入源程序(可保存、打开源程序) (2)可由用户选择是否生成语法树,并可查看所生成的语法树。 (3)应该书写完善的软件文档
2025-05-25 14:25:21 329KB 编译原理 Tiny 语法分析
1
基于lex和yacc的词法分析器+语法分析器,可以在控制台生成语法分析树 要使用lex和yacc(或其GNU版本flex和bison)来创建一个可以在控制台生成语法分析树的词法分析器和语法分析器,你需要遵循以下步骤: 定义词法规则 (lex文件): 使用正则表达式来定义你的语言中的记号(tokens)。 为每个记号编写一个规则,当lex匹配到输入流中的这些模式时,它会执行相应的动作。 编写语法规则 (yacc文件): 使用BNF(巴科斯-诺尔范式)或EBNF(扩展巴科斯-诺尔范式)来定义你的语言的语法。 为每个语法规则编写一个动作,这个动作通常包括构建语法分析树的一部分。 集成lex和yacc: lex生成的词法分析器会读取源代码,并产生记号流。 yacc生成的语法分析器会消费这些记号,并根据语法规则构建分析树。
2025-05-13 19:43:41 27KB 词法分析
1
标题 "swin-tiny-patch4" 指向的是Swin Transformer模型的一个变体,该模型在计算机视觉任务中表现出色,特别是图像分类、目标检测和语义分割等领域。Swin Transformer是2021年提出的一种新颖的Transformer架构,它引入了窗口内的自注意力机制,有效解决了传统Transformer计算复杂度高且不适合处理大分辨率输入的问题。 **Swin Transformer的原理:** Swin Transformer的核心思想是将输入图像划分为多个小的非重叠窗口,并在每个窗口内执行自注意力操作,这样大大降低了计算复杂度,同时保持了Transformer模型的长距离依赖捕获能力。此外,Swin Transformer还引入了层次结构,通过跨窗口的线性变换来连接相邻层的窗口,使得模型能够学习到更全局的信息。 **"tiny" 和 "patch4" 的含义:** "tiny"通常表示模型大小的配置,这意味着这是一个轻量级版本,相对于更大更复杂的模型,它具有更少的参数,适合资源有限的环境。"patch4"则指的是输入图像被划分为4x4的像素块,这些块作为Transformer的基本处理单元。每个位置的块都会通过嵌入层转化为特征向量,然后在窗口内进行注意力计算。 **"window7" 的意义:** "window7"表示每个窗口的大小为7x7像素。窗口大小的选择对模型性能有一定影响,更大的窗口可以捕捉更广阔的上下文信息,但会增加计算成本。在Swin Transformer中,选择合适的窗口大小是平衡性能和效率的关键。 **"224_22k.pth" 文件详解:** 这个文件名表明这是一个预训练模型的权重文件,".pth"是PyTorch库常用的权重文件格式。"224"可能是指在训练过程中,输入图像的预处理尺寸为224x224像素,这是许多计算机视觉模型的标准预处理尺寸。"22k"可能是指模型的总参数数量大约是22000(通常以千为单位表示),这与"tiny"版本的轻量化设计相吻合。 "swin_tiny_patch4_window7_224_22k.pth" 是一个基于Swin Transformer架构的小型化模型,它采用4x4的像素块,7x7的窗口注意力,适用于224x224像素的输入图像,并且拥有约22000个参数。这个模型文件可以用于在新的计算机视觉任务中进行微调,以利用其在大量数据上预训练得到的特征提取能力。
2025-05-09 13:11:24 156.82MB
1
重庆理工大学《编译原理》课程设计(词法分析+语法分析+语义分析+目标代码生成+特色与创新)
1
对KEIL中利用RTX51 TINY实现的traffic(交通灯)例子进行了改造,使之适用于89C52,用proteus搭建电路进行了仿真,方便大家学习嵌入式操作系统的编程方法,理解在操作系统下的程序编程方法,包括信号量的使用方法,任务之间的协作,串口通信驱动程序的编写技巧,及接口函数putchar()的编写技巧,以及putchar()和printf()的重封装技术等,建议认真研读程序。
1
《SNL 编译器与编译原理:深入解析词法、语法与语义分析》 编译器是计算机科学中的重要组成部分,它负责将高级编程语言转化为机器可执行的指令,这一过程涉及多个阶段,主要包括词法分析、语法分析和语义分析。在本文中,我们将深入探讨这些关键步骤,结合提供的文件`compiler.cpp`、`README.md`和`source.txt`,来理解编译器的工作原理。 一、词法分析 词法分析,又称扫描,是编译器的初步工作,它的目标是将源代码分解成一个个独立的符号,这些符号被称为“记号”(Token)。在这个过程中,编译器会识别出关键字、标识符、常量、运算符等元素。例如,在`source.txt`中,编译器会将`int main()`识别为一个函数声明,将`+`、`-`等视为运算符,将`var1`、`var2`等视为标识符。词法分析器通常由正则表达式驱动,能够高效地处理源代码的字符流。 二、语法分析 语法分析紧随其后,它对词法分析生成的记号序列进行解析,构建出符合程序语言语法规则的抽象语法树(AST)。此阶段通常使用上下文无关文法(CFG)来描述编程语言的结构。`compiler.cpp`可能包含了实现LR、LL或LL(*)等解析策略的代码。例如,对于`a = b + c;`这样的语句,编译器会构造一棵表示赋值操作的树,其中`=`为根节点,`a`、`b + c`为其子节点。 三、语义分析 语义分析是编译过程中的关键环节,它检查源代码的逻辑含义,确保符合编程语言的语义规则。这包括类型检查、作用域分析和常量折叠等任务。例如,编译器需确保变量在使用前已定义,函数调用的参数类型与函数声明匹配,以及计算常量表达式。在`compiler.cpp`中,这部分可能包含了大量的条件判断和类型转换代码。 四、代码生成 完成了语义分析后,编译器将生成目标代码,即机器语言或者中间代码(如Java字节码)。这个过程通常涉及到优化,如死代码消除、循环展开等,以提高程序运行效率。虽然在给定的文件列表中没有直接提到代码生成的文件,但在实际的编译器实现中,这是必不可少的一环。 五、链接 如果编译器生成的是目标代码,那么还需要链接器将多个目标文件合并成可执行文件,解决外部引用,如函数和全局变量。这一步骤通常发生在编译过程的后期,但不在编译器本身的功能范围内。 通过阅读`README.md`,我们可以获取关于如何使用这个课程设计项目的指导,包括编译和运行编译器的命令行选项,以及预期的输出格式。对于学习者来说,理解和实现这样一个编译器将有助于深入理解编程语言的本质,增强问题解决和软件工程的能力。 编译器的工作流程是一个复杂而精细的过程,涉及了计算机科学的多个领域。从词法分析到语义分析,再到代码生成,每个步骤都有其独特的挑战和解决方案。通过研究`SNL`编译器的源代码,我们可以更深入地理解这一过程,并提升自己的编程技能。
2025-04-08 22:33:41 19KB
1
Swin-Unet是一种基于Swin Transformer的深度学习网络模型,主要应用于图像分割任务。Swin Transformer是Transformer架构在计算机视觉领域的一个创新应用,由Liu等人于2021年提出。它通过引入窗口内的自注意力机制,解决了传统Transformer全局自注意力计算复杂度高的问题,同时保持了对长程依赖的捕捉能力。 Swin Transformer的核心是层次化的结构,分为多个阶段,每个阶段由多个Swin Transformer块组成。这些块内部包含两个主要部分:窗口自注意力层(Window-based Multi-Head Self-Attention, W-MSA)和多层感知机(MLP)。W-MSA在每个窗口内进行自注意力计算,降低了计算复杂度,同时通过移窗策略连接相邻窗口,实现了跨窗口的信息交换。MLP则负责非线性变换,增强特征表达。 Swin-Unet是Swin Transformer与经典Unet结构的结合,继承了Unet的对称双路径设计,用于处理像素级预测任务,如语义分割。Unet的特点是其上下采样和上采样路径,能够有效地结合粗略的全局信息和精细的局部细节,从而在图像分割任务中表现出色。Swin-Unet将Swin Transformer模块集成到Unet的每个跳跃连接中,提高了模型的表示能力和分割精度。 预训练模型“swin-tiny-patch-window7-224.pth”是Swin-Unet网络在大规模数据集上训练得到的权重,其中"swin-tiny"表示这是一个轻量级的模型配置,适合资源有限的环境;"patch-window7"指的是模型使用了7x7的窗口大小进行注意力计算;"224"则代表输入图像的尺寸为224x224像素。这个预训练模型可以被用于初始化自己的Swin-Unet网络,然后在特定任务的微调上使用,以提高模型对新任务的适应性和性能。 在实际应用中,使用Swin-Unet进行图像分割时,首先需要加载这个预训练模型的权重,然后根据目标任务调整网络结构,例如改变输出通道的数量以匹配类别数。接着,用目标数据集进行微调,优化器通常选择Adam或SGD,学习率会采用余弦退火或步进衰减策略。在训练过程中,可以通过监控验证集的表现来调整超参数,以达到最佳性能。 Swin-Unet模型结合了Transformer的全局信息处理能力和Unet的高效特征融合,尤其适用于需要精确像素级预测的任务,如医疗影像分析、遥感图像处理等。而“swin-tiny-patch-window7-224.pth”预训练模型则为研究人员和开发者提供了一个强大的起点,帮助他们更快地在相关领域实现高性能的解决方案。
2025-04-03 21:06:18 100.11MB 机器学习
1
文件名:RPG Tiny Hero Wave PBR.unitypackage RPG Tiny Hero Wave PBR 是一个 Unity 插件,提供一系列采用 PBR(物理基础渲染)技术的小型 RPG 英雄角色和敌人模型,专为 RPG 和策略类游戏设计。这些角色经过精心设计,具有高质量的细节和纹理,同时优化了性能,适合各种平台,尤其是需要大量角色渲染的场景。 主要功能: 高质量 PBR 角色: 所有角色都采用 PBR 技术进行渲染,确保在不同光照条件下表现出逼真的材质效果,如金属、布料、皮革等。PBR 技术能够使模型在各种环境光和动态光照下表现更加真实。 丰富的角色库: 插件提供了多种不同类型的英雄角色和敌人,每个角色都经过精心设计,适合 RPG 或策略游戏中的不同职业和阵营。通常包括战士、法师、弓箭手等角色类型,以及各种敌人如怪物、兽人等。 精致的动画: 角色配有丰富的动画集,包括行走、跑步、攻击、受伤、死亡等常用动作。动画流畅自然,适用于多种游戏场景,尤其适合 RPG 游戏中的战斗和探索场景。 小型化设计: 这些角色以小型化设计为特色,通常具有卡通风格或者....
2025-02-23 12:25:41 290.47MB Unity插件
1
根据提供的文档信息,本文将对Rtx51_tiny_RTOS中文版的相关知识点进行详细的解析与总结。 ### Rtx51_tiny_RTOS中文版概述 Rtx51_tiny_RTOS是一款专为Keil C51编译器设计的小型实时操作系统(RTOS),适用于8051系列微控制器。该版本为v2.01,发布日期为2007年5月31日。Rtx51_tiny_RTOS的主要特点包括轻量级、占用资源少、易于移植等特点,非常适合于资源受限的嵌入式系统开发环境。 ### RTX51tiny简介 #### 1. RTX51tiny简介 RTX51tiny是一个小型实时操作系统,主要面向基于8051内核的微控制器,如8051及其兼容的变种。它提供了一系列的基础服务,如任务管理、信号量管理等,这些服务对于实现多任务并发处理至关重要。 #### 1.1 RTX51tiny的特性 - **轻量级**:RTX51tiny占用内存极少,适合于资源有限的微控制器。 - **可配置性**:用户可以根据自己的需求定制操作系统的服务功能。 - **易用性**:提供了简单直观的API接口,便于开发者快速上手。 #### 1.2 RTX51tiny的体系结构 RTX51tiny采用了一种分层的设计思想,底层为硬件抽象层(HAL),用于屏蔽不同微控制器之间的差异;上层则是RTOS的核心服务模块,如任务管理、时间管理等。 #### 1.3 RTX51tiny的应用场景 - **工业控制**:由于其稳定性和可靠性,常被应用于各种工业控制系统中。 - **消费电子**:适用于一些低功耗、低成本的消费电子产品,如玩具、家电等。 - **汽车电子**:可用于汽车中的各种控制单元。 #### 1.4 RTX51tiny的安装与配置 RTX51tiny通常通过Keil uVision集成开发环境进行安装和配置。安装过程中需要注意选择正确的硬件配置和编译选项。 #### 1.5 RTX51tiny的任务管理 - **1.5.1 任务创建**:通过`os_create_task`函数创建一个新任务。 - **1.5.2 任务删除**:使用`os_delete_task`函数来删除不再需要的任务。 - **1.5.3 任务挂起**:可以利用`os_suspend_task`来暂时挂起一个任务。 - **1.5.4 任务恢复**:使用`os_resume_task`函数来恢复之前挂起的任务。 - **1.5.5 任务优先级设置**:通过`os_set_priority`函数调整任务的优先级。 - **1.5.6 任务切换**:`os_switch_task`函数实现了任务间的切换。 #### 1.6 RTX51tiny的信号量管理 - **1.6.1 信号量创建**:利用`os_create_semaphore`创建一个信号量对象。 - **1.6.2 信号量等待**:使用`os_wait_semaphore`函数等待信号量变为可用状态。 - **1.6.3 信号量释放**:`os_post_semaphore`函数用于释放信号量。 ### RTX51tiny的API函数 #### 2. API函数介绍 RTX51tiny提供了丰富的API函数,涵盖了任务管理、信号量管理、时间管理等多个方面,以下是一些常用的API函数: - **2.1 `os_create_task`**:创建一个新的任务。 - **2.2 `os_delete_task`**:删除一个任务。 - **2.3 `os_switch_task`**:实现任务间的切换。 #### 3. 任务管理函数 - **3.1 `os_create_task`**:创建一个新任务。 - **3.2 `os_delete_task`**:删除一个任务。 - **3.3 `os_suspend_task`**:挂起一个任务。 - **3.4 `os_resume_task`**:恢复一个挂起的任务。 - **3.5 `os_set_priority`**:设置任务的优先级。 - **3.6 `os_running_task_id`**:获取当前正在运行的任务ID。 #### 4. 信号量管理函数 - **4.1 `os_create_semaphore`**:创建一个信号量对象。 - **4.2 `os_wait_semaphore`**:等待信号量变为可用状态。 - **4.3 `os_post_semaphore`**:释放信号量。 #### 5. 时间管理函数 - **5.1 `os_get_ticks`**:获取系统的时钟周期数。 - **5.2 `os_delay`**:延时指定的时间。 - **5.3 `os_reset_interval`**:重置定时器的间隔。 ### RTX51tiny的安装与配置步骤 1. **下载并安装Keil uVision**:首先需要在电脑上安装Keil uVision IDE。 2. **添加RTX51tiny源代码**:将RTX51tiny的源代码文件添加到项目中。 3. **配置项目设置**:在项目的“Options for Target”中配置正确的CPU类型和其他编译选项。 4. **构建项目**:编译并链接项目以确保没有错误。 5. **调试与测试**:使用Keil uVision的调试工具对程序进行调试,并进行相应的功能测试。 ### 结论 Rtx51_tiny_RTOS中文版是一款专为8051系列微控制器设计的小型实时操作系统,具有轻量级、易用性和可配置性强的特点。它支持任务管理、信号量管理和时间管理等功能,适用于各种嵌入式应用场合。通过本文的介绍,希望能帮助读者更好地理解和掌握Rtx51_tiny_RTOS的使用方法和技术要点。
2025-01-10 20:49:18 623KB Rtx51_tiny_RTOS中文版.pdf
1