提出一种适用于图像块匹配的的图像描述子(名字起的很好听,convolutional descriptor,卷积描述子)。图匹配是很多计算机视觉应用领域非常基础的问题。从最近深度学习在目标检测和分类任务取得的成功受到了启发。开发了一个模型,将原始的输入图像块映射成一个低为的特征矢量,那么两个低维特征越小,图像块就越相似,(large otherwise)。作为一个距离测度,作者选用了L2范数,也就是们说的欧拉距离,这个距离测度很快并广泛用于评价大多数hand-craftedd
1
匹配问题是是很多计算机视觉应用问题的基础。我考虑到图像会发生大规模的形貌尺度等变化,所以直接训练了一个CNN模型进行参数拟合。特别的,我研究了很多的神经网络框架,主要探索了那些网络结构更胜任图像匹配问题。同时,我也进行了大量的数据测试,结果证明,采用孪生网络进行图像匹配具有非常大的优势。 图1.缩略图。我的目标在于学习一个通用的相似性测度函数,并应用于图像匹配中。为了编码这样一个函数,我大量探索了卷积神经网络结构。为了研究不同网络结构的速度与时间的考量,我研究了当下最普遍的双通道卷积网络、孪生卷积网络、伪孪生网络。图2.我研究的三
1
提出一种适用于图像块匹配的的图像描述子(名字起的很好听,convolutionaldescriptor,卷积描述子)。图匹配是很多计算机视觉应用领域非常基础的问题。从最近深度学习在目标检测和分类任务取得的成功受到了启发。开发了一个模型,将原始的输入图像块映射成一个低为的特征矢量,那么两个低维特征越小,图像块就越相似,(largeotherwise)。作为一个距离测度,作者选用了L2范数,也就是们说的欧拉距离,这个距离测度很快并广泛用于评价大多数hand-crafteddescriptors,例如SIFT。的方法输出了艺术级的基于L2的描述子,这个描述子可以直接取代SIFT。此外采用batchn
1