%% 清空环境变量 warning off % 关闭报警信息 close all % 关闭开启的图窗 clear % 清空变量 clc % 清空命令行 %% 导入数据 res = xlsread('数据集.xlsx'); %% 数据分析 num_size = 0.7; % 训练集占数据集比例 outdim = 1; % 最后一列为输出 num_samples = size(res, 1); % 样本个数 res = res(randperm(num_samples), :); % 打乱数据集(不希望打乱时,注释该行) num_train_s = round(num_size * num_samples); % 训练集样本个数 f_ = size(res, 2) - outdim;
2026-01-21 14:31:38 61KB 支持向量机 数据集
1
在这个名为"SVM神经网络的数据分类预测-葡萄酒种类识别"的案例中,我们将深入探讨如何使用支持向量机(Support Vector Machines, SVM)和神经网络这两种机器学习算法来对葡萄酒的种类进行预测。这个压缩包可能包含了相关的数据集、代码文件以及可能的分析报告,旨在帮助我们理解并实践数据分类预测的过程。 我们要了解葡萄酒种类识别任务的基础。这个任务通常涉及到从化学成分(如酒精含量、酸度、糖分等)中提取特征,然后将这些特征用于训练模型,以区分不同类型的葡萄酒。这是一个典型的监督学习问题,因为每个样本都已知其所属的类别。 SVM是一种强大的监督学习算法,尤其擅长处理小到中等规模的高维数据。它通过构造最大边距超平面来进行分类,使得不同类别的样本被有效地分离。在葡萄酒种类识别中,SVM可能会首先对原始特征进行预处理,如标准化或归一化,然后选择合适的核函数(如线性、多项式或径向基函数RBF)来构建非线性决策边界。 神经网络,尤其是深度学习中的多层感知器(Multilayer Perceptron, MLP),是另一种广泛用于分类任务的模型。它们通过模拟人脑神经元的工作方式,通过多层非线性变换来学习复杂的数据表示。在葡萄酒分类问题中,神经网络可能包含输入层(对应于葡萄酒的化学属性)、隐藏层(用于特征学习)和输出层(用于预测葡萄酒类别)。 在实际操作中,我们首先需要加载数据集,通常包括训练集和测试集。数据预处理是关键步骤,包括处理缺失值、异常值以及特征缩放。接着,我们会使用SVM和神经网络分别建立模型,通过调整超参数(如SVM的C和γ,神经网络的学习率、隐藏层节点数、批次大小等)来优化性能。模型的训练通常采用交叉验证来防止过拟合,评估指标可能包括准确率、精确率、召回率和F1分数。 在压缩包内的"案例12 SVM神经网络的数据分类预测-葡萄酒种类识别"可能包含了Python代码示例,使用诸如scikit-learn库实现SVM和Keras或TensorFlow库构建神经网络模型。这些代码会展示数据加载、模型构建、训练、验证和预测的全过程。 总结来说,这个案例涵盖了使用SVM和神经网络进行数据分类预测的基本流程,特别是在葡萄酒种类识别这个特定问题上的应用。通过学习和实践这个案例,我们可以更好地理解这两种算法的优势,以及如何在实际问题中选择和优化模型。
2025-12-25 23:51:11 8KB
1
支持向量机(SVM)是一种流行的监督学习算法,用于分类和回归任务。在Python的机器学习库scikit-learn(sklearn)中,SVM提供了多种实现,包括`SVC`、`NuSVC`和`LinearSVC`。 ### 1. SVC支持向量机分类模型 `SVC`(Support Vector Classifier)是基于最大间隔策略的分类器,它寻找一个超平面最大化类别之间的间隔。在示例代码中,`kernel='linear'`表示使用线性核函数,即数据可以直接线性分离的情况。`clf.fit(X, Y)`对数据进行训练,`clf.coef_`返回模型的权重向量`w`,`clf.intercept_`给出截距。通过这些参数可以绘制决策边界,例如,代码中计算了决策边界的斜率`a`并绘制了与支持向量平行的两条直线。 ### 2. NuSVC支持向量机分类模型 `NuSVC`(Nu Support Vector Classifier)是`SVC`的一个变体,它允许指定支持向量的数量(`nu`参数),从而对样本分布比例有所控制。在给定的代码示例中,创建了一个`NuSVC`实例并使用简单的二分类数据进行训练。`clf.predict`用于预测新样本的类别,`clf.support_`返回支持向量的索引,`clf.classes_`给出所有可能的类别。 ### 3. sklearn.svm.LinearSVC `LinearSVC`是另一种线性支持向量机实现,它主要优化了大规模数据集上的性能。与`SVC`不同,`LinearSVC`不使用`C`和`nu`参数,而是直接使用`C`来控制正则化强度。在鸢尾花数据集的例子中,`LinearSVC`被用来训练模型,并通过`score`方法评估模型在测试集上的表现,`predict`方法用于预测测试集的类别。 ### SVM关键概念: - **核函数**:当数据非线性可分时,SVM通过核函数将数据映射到高维空间,使得在高维空间中可以找到一个线性超平面进行分类。常见的核函数有线性核、多项式核、RBF(高斯核)等。 - **支持向量**:距离决策边界最近的样本点,它们决定了决策边界的形状。 - **间隔(Margin)**:支持向量到决策边界的距离,SVM的目标是最大化这个间隔。 - **C参数**:正则化参数,控制模型的复杂度,较大的C值允许更多的样本点落在决策边界上,较小的C值使模型更倾向于找到更大的间隔。 - **nu参数**:`NuSVC`中的参数,控制支持向量的上界和下界,同时也限制了分类错误的样本数量。 在实际应用中,选择哪种SVM模型取决于数据的特性,例如线性可分性、样本数量、内存限制以及是否需要控制支持向量的数量。对于线性可分数据,`LinearSVC`可能更快,而对于非线性数据,可以选择`SVC`或`NuSVC`并尝试不同的核函数。
2025-11-23 00:33:05 179KB 支持向量机 sklearn python 数据挖掘
1
在现代工业自动化领域,机器人视觉技术的应用越来越广泛。机器人的视觉系统可以帮助机器人感知周围环境,理解任务目标,从而做出相应的动作。UR5作为一款轻量级的协作机器人,以其灵活性和易用性成为科研和工业应用中的常见选择。在进行机器人视觉研究时,Gazebo作为一款流行的机器人仿真平台,提供了一个模拟真实世界环境的平台,便于进行各种视觉算法的测试和优化。 SIFT(尺度不变特征变换)算法是一种局部特征提取方法,它能在图像中提取出具有尺度不变性的关键点,并对这些关键点进行描述,从而实现对物体的快速、准确识别,尤其在物体发生旋转、缩放或亮度变化时仍然具有良好的稳定性和区分度。在机器人视觉系统中,SIFT算法常常被用于物体位姿的估计,这对于机器人准确抓取目标物体至关重要。 在本文档“机器人视觉_UR5_Gazebo_抓取_SIFT位姿估计Ma_1743961359.zip”中,可以推断其主要内容将涉及如何将UR5机器人的抓取任务与SIFT位姿估计算法结合,并在Gazebo仿真环境中进行测试和验证。通过在Gazebo中模拟UR5机器人视觉系统的操作,研究者能够评估SIFT算法在真实世界环境下的性能表现,并对算法进行调整以提高其准确性和效率。 文档的具体内容可能会包括以下几个方面: 1. UR5机器人介绍:UR5是UR家族中的一个成员,以其6自由度的设计,能够执行复杂的空间运动任务。在文档中,可能会详细描述UR5的结构特点、运动范围、控制方式等基本信息。 2. Gazebo仿真环境搭建:文档会介绍如何在Gazebo中搭建UR5机器人模型,并设置仿真场景,包括机器人的安装位置、仿真环境的光照和纹理等因素。 3. 机器人视觉系统构建:这部分内容将涉及到视觉系统的设计,包括摄像头的选择、安装位置、分辨率等参数的设置。 4. SIFT位姿估计算法实现:文档会详细介绍SIFT算法的原理以及在UR5机器人中的实现方式,包括关键点检测、特征描述子提取、关键点匹配等步骤。 5. 抓取任务设计:文档会探讨如何利用SIFT算法进行物体位姿估计,并基于此估计指导UR5机器人的抓取动作。这可能包括抓取点的选择、抓取路径规划以及抓取动作的实现。 6. 测试与评估:文档可能会展示一系列的测试实验,包括在不同条件下的抓取成功率、算法的稳定性和效率等评估指标。 通过这些内容的深入研究,可以帮助开发者更好地理解UR5机器人在Gazebo仿真环境下的视觉抓取能力,以及如何通过SIFT算法提高抓取的准确性和效率。这不仅对学术研究具有重要意义,也为工业领域提供了实用的技术参考和解决方案。
2025-11-21 16:25:39 56.17MB
1
python脑神经医学_机器学习算法_脑电信号处理_癫痫发作预测系统_基于Fourier变换和PCA降维的EEG特征提取与多模型分类_随机森林_SVM_逻辑回归_决策树算法_蓝牙传输_STM3.zip脑神经医学_机器学习算法_脑电信号处理_癫痫发作预测系统_基于Fourier变换和PCA降维的EEG特征提取与多模型分类_随机森林_SVM_逻辑回归_决策树算法_蓝牙传输_STM3.zip 在现代医学领域,利用机器学习算法对脑电信号进行分析以预测癫痫发作的研究逐渐增多。这一研究方向旨在通过高级的数据处理技术提高预测的准确性,从而为癫痫患者提供更为及时的预警和治疗。本项目的核心技术包括Fourier变换、PCA降维、以及多种机器学习模型,如随机森林、支持向量机(SVM)、逻辑回归和决策树算法。这些技术的综合运用,旨在从复杂的脑电信号(EEG)数据中提取有价值的特征,并通过不同的分类模型进行预测。 Fourier变换是一种数学变换,用于分析不同频率成分在信号中的表现,而PCA(主成分分析)降维是一种统计方法,能够降低数据集的维度,同时保留数据最重要的特征。在本项目中,这两种技术被用来处理EEG信号,提取出对预测癫痫发作最有贡献的特征。 随机森林是一种集成学习算法,通过构建多个决策树并将它们的预测结果进行汇总来提高整体模型的预测准确度和稳定性。SVM模型则通过寻找最佳的超平面来区分不同的数据类别,适用于处理高维数据和非线性问题。逻辑回归虽然在原理上是一种回归分析方法,但在二分类问题中,它通过将线性回归的结果转换为概率值来进行预测。决策树模型则是通过一系列的问题来预测结果,它易于理解和实现,适合快速的分类预测。 上述提到的各种模型都被用于本项目中,通过并行处理和结果比较,以期达到最佳的预测效果。在实际应用中,这些模型的训练和测试可能需要大量的计算资源和时间,因此研究者常常需要优化算法以提高效率。 蓝牙传输技术在本项目中的应用,意味着预测系统可以通过无线信号将分析结果实时地发送到患者的监护设备上,如智能手机或专用的医疗设备。这样,患者或医护人员能够及时接收到癫痫发作的预警信息,从而做出快速反应。而STM3可能是指某种硬件模块或微控制器,它可能是项目中的一个关键组件,用于处理信号或将数据传输给移动设备。 整个项目的目标是通过融合先进的信号处理技术和机器学习算法,为癫痫患者提供一个便携、高效的预测系统。这样的系统能够在不影响患者日常生活的前提下,持续监控患者的EEG信号,一旦检测到异常,即刻通过蓝牙技术将警报发送至监护设备。 通过附带的说明文件和附赠资源,用户可以更深入地了解系统的使用方法、技术细节以及可能遇到的问题和解决方案。这些文档为系统的安装、配置和维护提供了宝贵的指导。 医疗技术的不断进步,尤其是结合了机器学习算法的智能医疗设备的出现,正逐步改变着疾病的诊疗模式,提升了患者的生活质量。癫痫预测系统的研发是这一趋势的缩影,它不仅促进了医学与信息科学的交叉融合,也为患者提供了更为个性化和精准的医疗服务。
2025-11-17 08:48:32 471KB python
1
支持向量机(Support Vector Machine,SVM)是一种强大的机器学习算法,广泛应用于分类和回归问题。这个"很难得的svm程序包"包含了经典的支持向量机程序,为用户提供了一个方便的工具来处理各种数据集。 SVM的核心思想是通过找到一个最优超平面将不同类别的数据点分开。在二维空间中,这个超平面可以是一条直线;在高维空间中,它可能是一个超平面。SVM的目标是最大化这个间隔,使得两类样本离超平面的距离最大,这样可以提高模型的泛化能力。 程序包中的SVM可能包括以下关键组件: 1. **训练模型**:SVM算法的训练过程涉及找到最佳的决策边界。这通常通过解决一个优化问题来实现,即寻找最大间隔的超平面。常用的方法有硬间隔最大化(Hard Margin SVM)和软间隔最大化(Soft Margin SVM),后者允许一些数据点落在间隔内,以增加模型的鲁棒性。 2. **核函数**:SVM的一个独特之处在于其能处理非线性问题。通过引入核函数(如多项式核、高斯核/RBF或Sigmoid核),数据可以被映射到高维特征空间,使得原本难以划分的数据在新空间中变得容易区分。 3. **分类与回归**:SVM不仅可以用于二分类问题,也可以通过一对多或多对一的方式扩展到多分类任务。同时,通过特定的技术,如ε-近似支持向量机(ε-SVM),SVM还能用于回归问题,预测连续变量。 4. **调参**:程序包可能包含参数调优功能,如选择合适的惩罚系数C(控制模型复杂度)和核函数参数γ(影响RBF核的宽度)。网格搜索、随机搜索等方法可以帮助找到最优参数组合。 5. **预测与评估**:训练好的SVM模型可以用于对新数据进行预测,并且程序包通常会提供评估指标(如准确率、精确率、召回率、F1分数等)来衡量模型的性能。 6. **库和接口**:这个程序包可能提供了方便的编程接口,支持常见的编程语言,如Python、Java或C++,使得用户能够轻松地将SVM集成到自己的项目中。 在实际应用中,用户可以利用这个程序包来解决各种问题,例如文本分类、图像识别、生物信息学分析等。需要注意的是,为了得到良好的模型性能,用户需要理解数据的特点,并适当地预处理数据,比如归一化、缺失值处理和特征选择。 这个"很难得的svm程序包"为研究者和工程师提供了一个高效且灵活的工具,帮助他们利用支持向量机技术解决实际问题。通过深入理解和熟练运用这个程序包,用户可以进一步探索和支持向量机在各种领域的潜力。
1
svm支持向量机python代码在机器学习领域,支持向量机(Support Vector Machine,简称SVM)是一种强大的分类器,广泛应用于图像分类、文本分类、人脸识别等任务。本篇博客将为您详细介绍SVM的理论基础,并通过Python代码实现一个SVM分类器,以帮助您深入了解SVM的工作原理和实际应用。 目录 介绍 什么是支持向量机? SVM的优势和应用领域 SVM的理论基础 线性可分与线性不可分问题 最大间隔分类器 拉格朗日对偶性 核函数的概念 实现一个简单的线性SVM分类器 数据准备与可视化 SVM模型的建立 训练与预测 结果可视化 解决线性不可分问题:核函数 什么是核函数? 常用的核函数类型 使用核函数的SVM分类器 超参数调优 C参数的调整 核函数参数的调整 处理多类分类问题 一对一(One-vs-One)策略 一对其余(One-vs-Rest)策略 SVM在实际应用中的案例 图像分类 文本分类 总结与展望 SVM的优点与局限性 其他分类器的比较 未来发展方向 plt.cm.Paired) plt.scatter(new_samples[:, 0], new_samples[:, 1], c=predicted, cmap=plt.cm.RdYlGn, marker='x') plt.xlabel('Feature 1') plt.ylabel('Feature 2') plt.legend(['Class 1', 'Class 2', 'Predicted Class'], loc='upper left') plt.show() 这段代码展示了如何使用训练好的 SVM 模型对新样本进行预测,并将预测结果可视化。绿色和蓝色表示训练数据的两个类别,红色和黄色的 "x" 表示使用 SVM 模型预测的新样本。 4. 解决线性不可分问题:核函数 当数据线性不可分时,我们可以使用核函数将数据映射到高维空间,使其变得线性可分。核函数可以将低维空间中的非线性关系转换为高维空间中的线性关系。常见的核函数包括: - 线性核(Linear Kernel):在原始特征空间中计算内积。 - 多项式核(Polynomial Kernel):以多项式形式扩展特征空间。 - 径向基函数核(Radial Basis Function Kernel,RBF):最常用的一种核函数,基于高斯函数,可以适应各种复杂的数据分布。 5. 超参数调优 SVM 中有两个重要的超参数:C 和 核函数参数(如 RBF 核的 γ)。C 控制模型的复杂度,较小的 C 值会使模型更倾向于找到一个具有更大间隔的分类器,可能导致欠拟合;较大的 C 值则可能过拟合。核函数参数则影响核函数的形状和范围。通常我们需要使用交叉验证来调整这些超参数以获得最佳性能。 6. 处理多类分类问题 SVM 原本是为二分类设计的,但可以通过两种策略扩展到多分类问题: - 一对一(One-vs-One)策略:每个类别与其他所有类别分别构建一个二分类 SVM,最终分类结果由多数投票决定。 - 一对其余(One-vs-Rest)策略:为每个类别构建一个 SVM,将其他类别合并为一个类别,预测时选择获得最高得分的类别。 7. SVM 在实际应用中的案例 SVM 在多个领域都有广泛应用,例如: - 图像分类:通过提取图像特征并用 SVM 进行分类,如手写数字识别。 - 文本分类:通过词袋模型或 TF-IDF 将文本转换为特征向量,然后用 SVM 进行情感分析或主题分类。 - 生物信息学:蛋白质功能预测、基因分类等。 - 医学诊断:根据患者的生理指标预测疾病风险。 - 金融领域:信用评分、股票市场预测等。 8. 总结与展望 SVM 是一种强大的分类工具,具有良好的泛化能力和处理高维数据的能力。尽管如此,SVM 也有其局限性,例如训练时间较长、对大规模数据集处理效率较低以及可能过拟合等问题。与其他分类器(如决策树、随机森林、神经网络)相比,SVM 在特定场景下可能更具优势,但在其他场景下可能表现不如其他方法。未来的发展方向可能包括改进 SVM 的训练效率、结合深度学习技术以及探索新的核函数。
2025-11-09 16:21:54 15KB python 支持向量机
1
【基于Android的饮食识别系统】是一种利用移动设备(如智能手机)上的摄像头拍摄食物照片,并通过图像处理技术来识别食物种类的应用。在这个系统中,SIFT(尺度不变特征变换)算法起到了关键作用,它是一种强大的特征检测和描述方法,能够帮助系统在不同尺度和旋转下识别图像中的关键特征。 SIFT算法的详细过程包括以下几个步骤: 1. **尺度空间极值检测**:通过高斯差分金字塔构建尺度空间,寻找在不同尺度下的局部极值点,这些点可能对应于图像中的边缘、角点或其他显著特征。 2. **关键点定位**:确定找到的极值点的位置,确保它们是稳定的,不受图像微小变化的影响。这通常涉及到去除噪声和次优点的过程。 3. **关键点定向**:为每个关键点分配一个方向,使得它们在旋转变化下也能保持不变。这通常通过计算关键点周围的梯度方向直方图实现。 4. **关键点描述符生成**:在每个关键点周围提取一个局部区域,并计算该区域的细节信息,生成描述符。描述符应具有旋转不变性和一定程度的平移不变性。 5. **描述符匹配**:将待识别食物照片的SIFT描述符与数据库中的已知食物样本匹配,找到最相似的描述符,从而识别出食物种类。 在Android平台上实现这样的系统,通常需要以下技术: - **Java**:作为Android应用的主要开发语言,用于编写用户界面、逻辑控制以及与设备硬件的交互。 - **Android SDK**:提供了一系列工具和API,开发者可以使用它们来访问摄像头、处理图像、创建图形用户界面等。 - **JNA(Java Native Access)**:由于SIFT算法的计算量大,效率要求高,通常会用到C或C++编写的高性能库。JNA允许Java代码直接调用这些本地库,无需编写JNI(Java Native Interface)代码。 在实际应用中,由于SIFT算法的计算复杂度,可能导致识别速度较慢。为了提高性能,可以考虑以下优化策略: 1. **并行计算**:利用多核CPU或者GPU进行并行处理,加速SIFT特征的计算。 2. **特征匹配优化**:采用更高效的匹配算法,如BFMatcher(Brute Force Matcher)或FLANN(Fast Library for Approximate Nearest Neighbors)。 3. **减少特征数量**:适度降低关键点的数量,或者简化描述符,以平衡识别准确率和速度。 4. **预处理图像**:对输入图像进行简单的预处理,如缩放、降噪,以减少后续处理的负担。 随着技术的发展,未来可能有更先进的图像识别算法和硬件支持,如深度学习模型(如卷积神经网络CNN),这些技术有望进一步提升饮食识别系统的性能和用户体验。
2025-10-22 17:02:35 1.82MB android sift java
1
Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-10-16 20:38:58 11.34MB matlab
1
内容概要:文档主要介绍了食用油品质检测与分析的四种技术手段。一是食用油品种识别,通过高光谱图谱结合GLCM算法提取油品纹理特征,再运用GA-SVM模型进行分类,最终以主成分分析散点图和层序聚类图展示分类结果。二是食用油的掺假鉴别,采用SI-PLSR方法建立油茶籽油掺假量预测模型,通过掺假浓度可视化预测图像直观展示掺假程度。三是理化定量预测,利用PCR和PLSR算法建立酸价、过氧化值等理化指标的预测模型并展示预测结果图。四是转基因油品预测,通过对油光谱预处理后建模,以不同颜色油滴标识转基因与否。; 适合人群:食品科学领域研究人员、食用油品质检测技术人员及相关专业的高校师生。; 使用场景及目标:①帮助专业人员掌握食用油品质检测的前沿技术;②为科研教学提供案例参考,提升教学质量;③为实验室检测提供具体操作指导和技术支持。; 其他说明:文档中提到的技术手段均配有图示或动态演示,有助于更直观地理解各个步骤及最终结果。
1