差异缺失分析 差异缺失分析可捕获单细胞RNA测序数据中的生物学变异 单细胞RNA测序数据的特征是具有大量的零计数,但是越来越多的证据表明这些零反映了生物变异而不是技术伪像。 我们提出了差异缺失分析(DDA),以鉴定单细胞RNA测序数据中生物变异的影响。 使用16个公开可用的模拟数据集,我们显示DDA可以准确地检测生物变异,并且可以比依赖计数的方法更可靠地评估转录本的相对丰度。 可从获得DDA。 可以在此处找到相关手稿图形的脚本,功能和源数据。 此外,从原始数据矩阵中的Seurat对象开始,描述了DDA的两个小插曲 可以在bioRxiv上找到手稿的预印本: ://doi.org/10.1101/2021.02.01.42929187 可以在一个闪亮的应用程序中交互式地浏览结果: : :
2022-10-30 15:38:22 96.15MB HTML
1
二代测序原理涉及RNA测序,RNA结构和RNA功能计算以及RNA数据分析处理的生物信息学方法。
2022-01-18 10:53:41 12.48MB RNA测序
1
单细胞RNA-Seq分析 这个为期2天的课程将讨论从scRNA-seq实验获得的数据的计算分析。 贡献 我们欢迎您为改进本课程而做出的所有贡献! 如果您在此过程中有任何疑问,疑虑或遇到任何困难,维护人员将竭尽所能为您提供帮助。 我们想请您熟悉我们的《 ,并查看有关正确格式,在本地呈现课程的方式,甚至如何编写新剧集的。 请参阅当前列表,以获取有关对此存储库做出贡献的想法。 为了做出您的贡献,我们使用GitHub流,这在一章中有很好的解释。 维护者 本课程的当前维护者是 作者 可以在“找到该课程的参与者列表 引文 要引用本课程,请向咨询
2021-12-13 20:19:11 1.58MB Python
1
CellBender CellBender是一个软件包,用于消除高通量单细胞RNA测序(scRNA-seq)数据中的技术伪像。 当前版本包含以下模块。 将来将添加更多模块: remove-background : 此模块从(原始)基于UMI的scRNA-seq计数矩阵中删除由于周围RNA分子和随机条形码交换引起的计数。 目前,仅支持由CellRanger count管道生成的计数矩阵。 将来会增加对其他工具和协议的支持。 在可以找到快速入门教程。 请参阅以获取有关使用CellBender的快速入门教程。 安装及使用 手动安装 推荐的安装方法如下。 创建一个conda环境并激活它: $ conda create -n cellbender python=3.7 $ source activate cellbender 安装模块: (cellbender) $ conda in
2021-05-12 13:39:16 613KB Python
1