CellBender:CellBender是一个软件包,用于消除高通量单细胞RNA测序(scRNA-seq)数据中的技术伪像-源码

上传者: 42131790 | 上传时间: 2021-05-12 13:39:16 | 文件大小: 613KB | 文件类型: ZIP
CellBender CellBender是一个软件包,用于消除高通量单细胞RNA测序(scRNA-seq)数据中的技术伪像。 当前版本包含以下模块。 将来将添加更多模块: remove-background : 此模块从(原始)基于UMI的scRNA-seq计数矩阵中删除由于周围RNA分子和随机条形码交换引起的计数。 目前,仅支持由CellRanger count管道生成的计数矩阵。 将来会增加对其他工具和协议的支持。 在可以找到快速入门教程。 请参阅以获取有关使用CellBender的快速入门教程。 安装及使用 手动安装 推荐的安装方法如下。 创建一个conda环境并激活它: $ conda create -n cellbender python=3.7 $ source activate cellbender 安装模块: (cellbender) $ conda in

文件下载

资源详情

[{"title":"( 58 个子文件 613KB ) CellBender:CellBender是一个软件包,用于消除高通量单细胞RNA测序(scRNA-seq)数据中的技术伪像-源码","children":[{"title":"CellBender-master","children":[{"title":"setup.py <span style='color:#111;'> 1.36KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 140B </span>","children":null,"spread":false},{"title":"readthedocs.yml <span style='color:#111;'> 135B </span>","children":null,"spread":false},{"title":"wdl","children":[{"title":"README.rst <span style='color:#111;'> 6.29KB </span>","children":null,"spread":false},{"title":"cellbender_remove_background.wdl <span style='color:#111;'> 3.18KB </span>","children":null,"spread":false}],"spread":true},{"title":"MANIFEST.in <span style='color:#111;'> 18B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false},{"title":"examples","children":[{"title":"remove_background","children":[{"title":"generate_tiny_10x_pbmc.py <span style='color:#111;'> 4.30KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"README.rst <span style='color:#111;'> 2.78KB </span>","children":null,"spread":false},{"title":"REQUIREMENTS.txt <span style='color:#111;'> 177B </span>","children":null,"spread":false},{"title":"REQUIREMENTS-RTD.txt <span style='color:#111;'> 98B </span>","children":null,"spread":false},{"title":"cellbender","children":[{"title":"remove_background","children":[{"title":"infer.py <span style='color:#111;'> 33.70KB </span>","children":null,"spread":false},{"title":"distributions","children":[{"title":"NegativeBinomialPoissonConvApprox.py <span style='color:#111;'> 6.09KB </span>","children":null,"spread":false},{"title":"NegativeBinomialPoissonConv.py <span style='color:#111;'> 7.47KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"NullDist.py <span style='color:#111;'> 2.57KB </span>","children":null,"spread":false}],"spread":false},{"title":"consts.py <span style='color:#111;'> 2.72KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"dataprep.py <span style='color:#111;'> 8.94KB </span>","children":null,"spread":false},{"title":"extras","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"simulate.py <span style='color:#111;'> 21.71KB </span>","children":null,"spread":false}],"spread":false},{"title":"dataset.py <span style='color:#111;'> 66.43KB </span>","children":null,"spread":false}],"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"vae","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"decoder.py <span style='color:#111;'> 2.91KB </span>","children":null,"spread":false},{"title":"encoder.py <span style='color:#111;'> 14.14KB </span>","children":null,"spread":false}],"spread":false},{"title":"cli.py <span style='color:#111;'> 7.62KB </span>","children":null,"spread":false},{"title":"argparse.py <span style='color:#111;'> 8.04KB </span>","children":null,"spread":false},{"title":"tests","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"test.py <span style='color:#111;'> 7.29KB </span>","children":null,"spread":false}],"spread":false},{"title":"exceptions.py <span style='color:#111;'> 352B </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 25.83KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 10.63KB </span>","children":null,"spread":false}],"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"base_cli.py <span style='color:#111;'> 2.96KB </span>","children":null,"spread":false}],"spread":true},{"title":"docs","children":[{"title":"Makefile <span style='color:#111;'> 638B </span>","children":null,"spread":false},{"title":"make.bat <span style='color:#111;'> 799B </span>","children":null,"spread":false},{"title":"source","children":[{"title":"index.rst <span style='color:#111;'> 705B </span>","children":null,"spread":false},{"title":"conf.py <span style='color:#111;'> 2.38KB </span>","children":null,"spread":false},{"title":"contributing","children":[{"title":"index.rst <span style='color:#111;'> 627B </span>","children":null,"spread":false}],"spread":false},{"title":"_static","children":[{"title":"remove_background","children":[{"title":"UMI_curve_tropes.png <span style='color:#111;'> 20.44KB </span>","children":null,"spread":false},{"title":"UMI_curve_defs.png <span style='color:#111;'> 14.00KB </span>","children":null,"spread":false}],"spread":false},{"title":"theme_overrides.css <span style='color:#111;'> 433B </span>","children":null,"spread":false},{"title":"design","children":[{"title":"logo_1024_1024.png <span style='color:#111;'> 227.82KB </span>","children":null,"spread":false},{"title":"logo_1024_759.png <span style='color:#111;'> 222.15KB </span>","children":null,"spread":false},{"title":"logo_250_185.png <span style='color:#111;'> 41.70KB </span>","children":null,"spread":false},{"title":"favicon.ico <span style='color:#111;'> 15.04KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"introduction","children":[{"title":"index.rst <span style='color:#111;'> 1.98KB </span>","children":null,"spread":false}],"spread":false},{"title":"usage","children":[{"title":"index.rst <span style='color:#111;'> 8.84KB </span>","children":null,"spread":false}],"spread":false},{"title":"citation","children":[{"title":"index.rst <span style='color:#111;'> 440B </span>","children":null,"spread":false}],"spread":false},{"title":"help_and_reference","children":[{"title":"remove_background","children":[{"title":"index.rst <span style='color:#111;'> 3.75KB </span>","children":null,"spread":false}],"spread":false},{"title":"index.rst <span style='color:#111;'> 134B </span>","children":null,"spread":false},{"title":"license","children":[{"title":"index.rst <span style='color:#111;'> 90B </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"getting_started","children":[{"title":"remove_background","children":[{"title":"index.rst <span style='color:#111;'> 5.79KB </span>","children":null,"spread":false}],"spread":false},{"title":"index.rst <span style='color:#111;'> 190B </span>","children":null,"spread":false}],"spread":false},{"title":"installation","children":[{"title":"index.rst <span style='color:#111;'> 1.38KB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true},{"title":"REQUIREMENTS-DOCKER.txt <span style='color:#111;'> 85B </span>","children":null,"spread":false},{"title":"docker","children":[{"title":"Dockerfile <span style='color:#111;'> 1.35KB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明