内容概要:本文详细介绍了如何在FPGA上使用Verilog实现N级CIC滤波器的设计方法及其在Quartus II 18.0中的应用。首先解释了CIC滤波器的基本结构,即由积分器和梳状滤波器组成,重点在于参数化的Verilog代码实现。文中提供了具体的积分器和梳状滤波器的Verilog代码片段,展示了如何处理符号扩展、延迟线、以及多级级联时的位宽管理等问题。同时,讨论了仿真过程中的一些技巧,如利用Matlab生成测试信号、ModelSim查看频谱变化等。此外,还分享了一些常见的工程实践问题及解决方案,如时钟使能信号同步、复位信号去抖动、数据溢出饱和处理等。 适合人群:具有一定FPGA开发经验,熟悉Verilog语言的硬件工程师和技术爱好者。 使用场景及目标:适用于需要进行采样率转换、抗混叠滤波等应用场景的技术人员。主要目标是帮助读者掌握CIC滤波器的工作原理及其在FPGA上的高效实现方法。 其他说明:文章强调了在实际项目中可能会遇到的问题及解决办法,如Quartus II 18.0的特定设置、资源优化策略等。对于初学者来说,建议先确保功能正确再逐步优化性能。
2025-07-22 20:55:58 305KB FPGA Verilog ModelSim Quartus
1
在电子设计领域,FPGA(Field-Programmable Gate Array)是一种可编程逻辑器件,它允许用户根据需求自定义硬件电路。QUARTUS II是Altera公司提供的一个强大的FPGA设计软件工具,广泛用于FPGA的开发流程。本教程将带你一步步地了解如何使用QUARTUS II进行FPGA开发,实现从概念到硬件实现的全过程。 一、环境搭建 你需要下载并安装QUARTUS II软件。这个过程通常包括选择合适的软件版本,根据系统需求配置安装选项,以及确保你的计算机上已安装了必要的驱动和硬件接口,如JTAG调试线。 二、项目创建 打开QUARTUS II,新建一个工程。在"File"菜单下选择"New Project Wizard",输入项目名称和保存位置,然后选择目标FPGA器件型号。这一步至关重要,因为不同的FPGA器件具有不同的资源和性能特性。 三、设计输入 设计输入是FPGA开发的核心环节,你可以选择多种语言和工具进行设计。QUARTUS II支持VHDL、Verilog等硬件描述语言,也支持基于图形化界面的Qsys系统集成工具。对于初学者,建议从VHDL或Verilog开始,它们类似于高级编程语言,用来描述数字逻辑。 四、编写代码 在源代码编辑器中,定义你的逻辑功能。例如,你可以编写一个计数器或者加法器的模块。确保你的代码符合语言规范,并充分注释,以便于理解和维护。 五、编译与仿真 完成代码编写后,点击"Compile"进行编译。QUARTUS II会检查语法错误、逻辑错误,并生成相应的硬件描述。同时,你可以利用ModelSim等仿真工具对设计进行功能验证,确保在实际硬件运行前逻辑无误。 六、适配与优化 编译成功后,进行适配(Place & Route)。这是将逻辑门分配到FPGA内部资源的过程,同时优化布线以提高速度和功耗。你可以通过查看适配报告了解资源占用情况。 七、生成配置文件 适配完成后,QUARTUS II会生成一个配置文件(.sof),这个文件包含了FPGA的配置信息。你可以将其烧录到FPGA中,或者保存为比特流文件(.bit)供其他系统使用。 八、硬件下载与测试 连接FPGA开发板,通过JTAG接口将配置文件下载到FPGA中。然后,通过示波器、逻辑分析仪等工具观察FPGA的输出,验证实际硬件功能是否与设计一致。 九、持续迭代与调试 如果发现设计存在问题,回到代码修改,重新编译、适配并下载。这个过程可能需要反复进行,直到满足设计需求。 通过这个傻瓜式详细教程,你应该能够掌握QUARTUS II的基本操作和FPGA开发流程。随着经验积累,你将更深入地了解FPGA的性能优化、时序分析等高级主题,从而更好地发挥FPGA的潜力。不断实践和学习,你将成为一名出色的FPGA开发者。
2025-07-10 10:38:01 1.27MB FPGA QUARTUS
1
基于FPGA的DDS原理信号发生器设计:利用Quartus II 9.1与Verilog HDL实现频率幅度可调的正弦波、方波、锯齿波及三角波生成器,包含代码与原理图。,基于FPGA的DDS原理信号发生器设计 quartusII 9.1平台 Verilog HDL语言编程 可产生正弦波、方波、锯齿波以及三角波 频率幅度可调节 代码+原理图 ,基于FPGA的DDS原理信号发生器设计; Quartus II 9.1平台; Verilog HDL语言编程; 产生多种波形(正弦波、方波、锯齿波、三角波); 频率幅度可调节; 代码与原理图。,"基于FPGA的信号发生器设计:Verilog HDL编程的DDS原理验证"
2025-06-18 19:36:27 1.74MB 哈希算法
1
内容概要:本文详细介绍了如何利用FPGA和Verilog编程实现16x16点阵屏的汉字动态显示系统。首先讨论了汉字存储方案,采用二维数组存储点阵数据并用case语句进行硬编码。接着阐述了动态扫描部分,运用双缓冲技术和状态机实现稳定的扫描机制。文中还讲解了左右移动、调速、暂停等功能的具体实现方法,如通过改变时钟分频系数调节速度,以及通过使能信号控制暂停。此外,作者分享了一些调试经验和移植到Vivado平台时需要注意的问题,如时钟约束和IP核替换。 适合人群:具有一定FPGA和Verilog编程基础的学习者、开发者。 使用场景及目标:适用于希望深入了解FPGA点阵屏显示原理和技术细节的人群,目标是能够独立完成类似项目的开发。 其他说明:文章提供了大量代码片段作为参考,帮助读者更好地理解和实践相关技术。同时提醒读者注意一些常见的错误和注意事项,如点阵消隐、跨时钟域信号同步等。
2025-06-08 15:54:36 133KB FPGA Verilog Quartus
1
Quartus ii 13.0 破解文件
2025-05-03 13:51:02 27KB Quartus 13.0
1
锁相环(PLL:Phase-lockedloops)是利用反馈(Feedback)控制原理实现频率及相位的同步技术。其核心作用是保持电路输出的时钟与外部参考时钟同步,从而在外部参考时钟的频率或相位发生变化时,PLL会检测到这种变化并通过内部反馈系统调节输出频率,直到两者重新同步,这种同步也被称为“锁相”。 PLL具有以下特征:无剩余频差锁定,良好的窄带载波跟踪性能,以及良好的宽带调制跟踪性能。在FPGA中实现UART通讯协议时,稳定时钟是稳定通讯的基础和前提。PLL的应用有助于提高FPGA中UART通讯的正确性、高效性和稳定性。 Quartus II是一款由Altera公司开发的FPGA/CPLD设计软件,广泛应用于电子系统的设计、模拟、测试和配置。在Quartus II中调用PLL模块时,首先要在工程下,通过主窗口的菜单栏选择“Tools->MegeWizard Plug-In Manager”。此操作将进入一个配置界面,需要设置PLL例化选项、器件库、编译语言以及PLL例化输出文件名。 选择PLL例化选项时,应选中“Installed Plug-Ins->I/O->ALTPLL”。器件库选择应依据所用FPGA系列,如本例程中使用的Cyclone IV系列器件库。编译语言选项应依据工程需求,本例中以Verilog HDL为例,故选择Verilog HDL。PLL例化输出文件名及其路径可以根据工程目录或自定义文件夹设置,如果文件不存在,需手动建立,并注意文件后缀名为“.v”。 完成上述设置后,进入PLL锁相环设置输入频率向导。在该页面需要设置PLL锁相环的输入频率,该频率根据使用的FPGA型号有所不同。例如,若使用25MHz晶振,则在该页面中设置输入频率为25MHz。 在接下来的配置页面中,可以设置PLL输出的多个频率的时钟信号。每个时钟信号的配置包括是否使用该时钟信号、调节输出时钟频率、改变占空比等。可通过直接输入频率或选择分频、倍频输入系数来调节输出时钟频率。分频和倍频可同时使用以产生更多的频率范围。 在EDA选择界面中可以根据需要进行选择,若没有特殊需求,可直接点击Next进入下一项。在Summary界面中选择输出文件,点击Finish后PLL的IP核例化文件生成结束。 完成以上步骤后,PLL模块就配置完成,可以通过Quartus II的EDA仿真工具进行仿真测试,验证PLL模块的功能是否正确。这样,开发者就可以在Quartus II环境下使用PLL模块优化FPGA设计,提高设计的性能和效率。
2025-04-20 19:34:28 710KB QuartusII Altera FPGA
1
FPGA点阵屏设计:汉字显示、控制与调速功能,Quartus II与Verilog开发,可移植至Vivado平台,FPGA点阵屏设计:汉字显示、控制与调速功能,Quartus II与Verilog开发,可移植至Vivado开发环境,基于FPGA的点阵屏设计,基于Quartus ii开发,Verilog编程语言,也可移植到vivado开发。 1、可以显示多个汉字 2、暂停、启动控制 3、左移右移控制 4、调速控制。 ,基于FPGA的点阵屏设计; Quartus ii开发; Verilog编程; 移植至vivado; 显示汉字; 控制功能; 调速控制,基于FPGA的点阵屏设计:多汉字显示与多种控制功能的Verilog编程实现
2025-04-06 10:49:38 2.66MB 数据结构
1
随着生活水平的提高,医疗水平也不断的提高,患者需求的及时传达就显得尤为重要,因而病房呼叫系统是医院的必备设备之一,为方便患者和医护人员之间的及时联系、提高医疗服务质量都起着极其重要的作用。 设计具有以下功能: 模拟病房呼叫输入; 1.显示优先级高的呼叫病房号,模拟呼叫声 2。对优先级低的呼叫进行存储,处理完高优先级后处理再处理 3.其他扩展功能可以自行针对开发板的功能模块具体设计合理的功能。 注意:在本文中,对设计的蜂鸣器呼叫时间进行了限制,考虑实际应用,这一限制不太合理,可以自行研究修改为持续呼叫。 在本文中没有附带代码,代码移步下一篇文章《基于FPGA的病房呼叫系统的各模块附带代码》 ### 病房呼叫系统设计与实现 #### 一、概述 随着社会的进步与科技的发展,医疗服务的质量成为了衡量一个国家或地区现代化水平的重要指标之一。其中,病房呼叫系统的完善与否直接影响到患者的就医体验及医疗效率。传统的病房呼叫系统通常采用模拟电路实现,存在功能单一、扩展性差等问题。随着现场可编程门阵列(FPGA)技术的成熟及其广泛应用,基于FPGA的病房呼叫系统设计成为可能。此类系统不仅能够有效提升医疗服务水平,还能满足患者对于紧急情况下的快速响应需求。 #### 二、FPGA与VHDL语言 ##### 2.1 FPGA简介 FPGA是一种高度灵活的数字集成电路,其内部包含大量可配置逻辑单元(CLBs)、可编程互联资源以及其他专用功能模块。通过软件配置,可以在FPGA上实现几乎任意的数字逻辑功能,从而构建出复杂多变的硬件系统。FPGA具有设计周期短、开发成本低、灵活性高等优点,在通信、军事、航空航天等领域有着广泛的应用前景。 ##### 2.2 VHDL语言 VHDL(Very High Speed Integrated Circuit Hardware Description Language)是一种用于描述数字系统的硬件描述语言。它不仅可以用于FPGA的设计与仿真,还可以用于ASIC(专用集成电路)的设计。VHDL支持多种设计风格,包括行为描述、数据流描述和结构描述等,这使得设计者可以根据不同的需求选择最适合的设计方法。此外,VHDL还具有良好的可读性和可维护性,便于团队协作和项目管理。 #### 三、病房呼叫系统设计要点 ##### 3.1 系统架构 基于FPGA的病房呼叫系统主要由以下几个部分组成: - **呼叫输入模块**:负责接收来自各个病房的呼叫信号,并根据信号强度或其他标准确定信号的优先级。 - **信号处理模块**:对输入信号进行处理,确保优先级高的信号被优先响应。 - **显示模块**:显示当前最高优先级的病房号码。 - **存储模块**:存储未处理的低优先级信号,待高优先级信号处理完毕后再逐一处理。 - **蜂鸣器控制模块**:根据系统状态控制蜂鸣器发出声音提醒医护人员。 ##### 3.2 设计流程 1. **需求分析**:明确系统的功能需求,如信号的优先级划分、显示方式等。 2. **方案设计**:基于需求制定设计方案,包括模块划分、接口定义等。 3. **代码编写**:使用VHDL语言编写各个模块的代码。 4. **仿真验证**:利用Quartus II软件进行功能仿真,验证设计是否符合预期。 5. **综合与布局布线**:将设计综合成网表文件,并进行布局布线优化。 6. **硬件测试**:将生成的比特流下载到FPGA开发板上进行实物测试,确保系统正常工作。 ##### 3.3 关键技术点 - **优先级处理**:通过设置阈值或比较器来判断信号的优先级。 - **存储技术**:采用RAM或寄存器文件等存储器件来保存低优先级信号。 - **人机交互界面**:设计简洁易用的用户界面,以便医护人员快速识别并响应患者的呼叫。 #### 四、案例分析 在具体实现过程中,可以通过以下步骤来完成病房呼叫系统的开发: 1. **确定开发板**:选择适合的FPGA开发板,如题目中提到的EP1C3T144C8。 2. **模块细化**:根据系统架构细化每个模块的具体功能与接口。 3. **编写代码**:利用VHDL语言编写每个模块的代码,并进行模块间的连接。 4. **功能仿真**:在Quartus II软件中进行功能仿真,检查是否有逻辑错误。 5. **时序仿真**:进一步进行时序仿真,确保系统在实际运行中的稳定性。 6. **硬件测试**:将设计下载到开发板上进行实物测试,验证其实际表现是否符合预期。 #### 五、总结 基于FPGA的病房呼叫系统设计充分利用了FPGA的灵活性和VHDL的强大功能,实现了高效的患者呼叫管理。通过对系统的精心设计和严谨测试,不仅可以显著提升医疗服务水平,还能为患者提供更加舒适和安全的就医环境。未来,随着技术的不断进步和发展,病房呼叫系统的功能还将得到进一步拓展和完善,更好地服务于医疗领域的需求。
2025-03-31 15:37:39 39.53MB fpga开发 病房呼叫系统 VHDL语言
1
在进行FPGA设计与开发的过程中,仿真验证是不可或缺的一环,尤其当涉及到IP核,比如Altera三速以太网IP核时,仿真就显得尤为重要。Quartus II是Altera公司推出的一款综合性的FPGA设计软件,它集成了逻辑设计、时序分析和布局布线等多个环节。Modelsim-Altera则是与Quartus II配套的仿真工具,用于验证逻辑设计的正确性。 在Quartus II 15.0版本中,仿真流程中一个重要的步骤是设置NativeLink。NativeLink能够将Quartus II工程文件与Modelsim-Altera仿真工具进行关联,以便于用户能够更加方便地进行仿真验证。在编译完成,没有错误的情况下,我们可以通过以下步骤来设置NativeLink: 点击Quartus II界面中的"Assignments" -> "Settings",在弹出的对话框中选择"EDA Tool Settings"(红框1处),接着选择"Simulation"(红框2处)。在设置过程中,需要核对红框3处和4处是否与图上设置的一致。随后,勾选红框5处的"Compile testbench"选项,点击红框6处的"Test Benches"以进入新的testbench设置窗口。 在testbench设置窗口中,点击"New"创建一个新的Testbench设置脚本。然后,点击NewTestBenchSettings选项卡中的Filename一栏最右侧的三个小点(红框1处所示)。在弹出的文件选项卡中,定位到工程目录下的"_testbench/testbench_verilog/"目录下,选择"_tb.V"文件并Open。返回到NewTestBenchSettings选项卡中后,点击Add将"_tb.v"添加进去。 接下来,需要再次点击那三个小点,进入文件选择选项卡中,并定位到工程目录下的"_testbench/testbench_verilog/models"文件夹中,选择除以"timing"开头的文件以外的其他所有文件。点击Open。这些文件是为了配合仿真TSE IP核而存在的仿真模型,它们组合在一起相当于虚拟了一个物理的网络收发器PHY,使得我们可以模拟真实的板级环境进行仿真测试。 在NewTestBenchSettings选项卡中,Testbench一栏中输入"_tb",而TopLevelmoduleintestbench一栏中输入"tb"。需要注意的是,尽管文件名字是"_tb.V",但文件中的testbench顶层实体名字仍然是"tb"。因此,我们不应该直接设置"_tb.V"作为topLevelmoduleintestbench的名字,而应该根据实际情况输入"tb"。 完成设置后,连续点击两次"OK",回到Settings-<工程名>选项卡中,勾选"Use Script to setup simulation",并定位到文件"_testbench/testbench_verilog//_wave.do"。这个文件是一个脚本文件,它的主要功能是帮助我们将信号有条理地添加到仿真波形窗口中,使得观察更加直观。点击"Apply",然后"OK"即可。 至此,NativeLink的设置基本完成。在Quartus II软件中点击"RTL Simulation"按钮就可以启动仿真。仿真过程会比较漫长,因为Modelsim-Altera需要首先对设计文件进行编译,整个过程大约需要3分钟左右的时间。仿真开始后,模型将会自动在波形窗口中添加信号并停在仿真时间0处。由于仿真脚本中没有"run"命令,所以添加完波形后Modelsim将进入等待状态。这时,我们需要手动输入"run-all"命令或者在GUI上点击"run-all"按钮来运行仿真。仿真大约运行10秒后会停下来,此时,我们就可以开始观察波形,并在Transcript窗口中获取仿真过程中的一些数据信息。 通过上述步骤,我们可以完成对Altera三速以太网IP核的仿真测试,观察收发模块和FIFO模块的信号波形,对仿真结果进行初步的分析。在后续的工作中,还需要对仿真结果进行深入的分析,以便进一步优化设计,确保最终的FPGA设计达到预期的功能和性能要求。
2025-01-09 15:20:58 62KB 软件开发 QUARTUS II15.0
1
FPGA系统中实现网口有多种方式,包括友晶的DE2-35开发板上使用的NIOS II处理器通过外部MAC芯片DM9000实现的web server,以及DE2-115开发板上使用NIOS II处理器与三速以太网(TSE)IP核实现web server......
2025-01-09 13:48:46 64KB 软件设计 QUARTUS 15.0
1