【Python安全渗透测试-UDP FLOOD网络渗透测试】是一个关于网络安全和漏洞利用的课程,主要讲解如何使用Python语言实施UDP洪水攻击(UDP FLOOD),这是一种常见的DDoS(分布式拒绝服务)攻击方式。以下是对该主题的详细解释: 1. **UDP FLOOD攻击原理**: UDP(用户数据报协议)是一种无连接的协议,不建立连接即可发送数据。在UDP FLOOD攻击中,攻击者大量发送带有随机或特定目标端口的UDP数据包到受害服务器。由于UDP是无状态的,当服务器接收到这些数据包并发现没有对应的服务在监听相应端口时,会回复ICMP不可达消息。大量这样的未预期数据包会导致服务器资源耗尽,从而造成服务中断。 2. **Python渗透测试工具开发**: - 开发渗透测试工具通常涉及编写Python脚本,利用Python丰富的网络编程库如`socket`,`scapy`等。 - `udpconn`函数:这个函数用于创建UDP连接,向目标服务器发送数据包。在Python中,可以使用`socket`模块的`sendto()`方法来实现。 - 对对象的关键属性赋值:在使用`scapy`库时,可以创建如` Ether`, `IP`, `UDP`等协议层的对象,并设置对应的源和目标IP、端口号等属性。 - 调用`udpconn`函数进行UDP FLOOD攻击:通过循环调用该函数,可以连续发送大量数据包,模拟洪水攻击。 3. **协议分析工具**: - 验证攻击效果通常需要使用网络协议分析工具,如Wireshark。这些工具可以帮助捕获和分析网络流量,查看UDP数据包的数量、频率和目标端口,确认攻击是否成功。 4. **攻击端口的调整**: - 攻击者可能会尝试针对非业务端口进行UDP FLOOD攻击,这样可以避开常规的防御策略。这需要在脚本中修改目标端口,然后再次运行以测试攻击效果。 5. **防御策略**: - 防火墙过滤:通过防火墙规则阻止来自不明来源的UDP数据包,特别是那些高频率、异常的流量。 - UDP服务管理:限制或禁用不必要的UDP服务,尤其是监控和响应服务,以减少攻击面。 - 代理机制:对于必须提供的UDP服务,可以采用代理服务器来隔离和控制对外部的访问,防止服务滥用。 - 监控网络:持续监控网络流量,识别和应对滥用行为。 6. **实验流程**: - 启动实验虚拟机:实验环境包括两台服务器,一台作为渗透测试机,另一台作为靶机。 - IP地址获取与网络连通性测试:使用`ifconfig`(Linux)或`ipconfig`(Windows)获取IP地址,通过`ping`命令检查网络连通性。 - 运行并验证脚本:执行渗透测试脚本,观察攻击效果。 - 实验结束时,关闭虚拟机以清理实验环境。 这个课程旨在教授如何使用Python进行网络渗透测试,尤其是如何实施UDP FLOOD攻击,以及如何检测和防御此类攻击。参与者将学习到网络攻击的基本原理、Python编程技巧以及网络安全防护措施。
2024-12-23 20:21:55 1019KB
1
本文件用于iOS object-c生成辣鸡代码,使用Python编写的工具。可以根据自己想要的内容进行修改。
2024-12-23 14:54:42 3KB Python编写 object-C代码
1
Python 爬虫数据可视化分析大作业 1. 项目概述 本项目旨在使用Python爬虫技术从互联网获取数据,并对这些数据进行可视化分析。整个项目将分为以下几个步骤:数据获取、数据清洗、数据分析和数据可视化。最终,我们将生成一个详细的文档,展示整个过程和分析结果。 2. 数据获取 我们将使用Python的requests库和BeautifulSoup库来爬取数据。目标网站为某电商平台,我们将获取商品的价格、评价数量和评分等信息。
2024-12-22 18:39:29 2.72MB python 爬虫
1
在本文中,我们将深入探讨"Python机器学习案例"这一主题,包括Logistic回归、K-均值聚类和随机森林等重要算法的应用。这些技术在数据科学领域具有广泛的应用,帮助我们从数据中发现模式、预测未来趋势以及进行决策。 让我们来看看Logistic回归。Logistic回归是一种分类算法,尽管它的名字中含有“回归”,但它主要用于解决二分类问题。在Python中,我们可以使用`sklearn`库中的`LogisticRegression`模型。这个模型基于Sigmoid函数,将连续的线性预测转换为概率输出。在案例中,你可能会看到如何准备数据、训练模型以及评估其性能,如计算准确率、查准率、查全率和AUC-ROC曲线。 接下来是K-均值聚类(K-Means)。这是一种非监督学习方法,用于发现数据集中的自然分组或类别。K-Means通过迭代找到最佳的类别中心,使得每个样本到最近类别中心的距离最小。在Python中,可以使用`sklearn.cluster.KMeans`实现。在案例中,你可能遇到如何选择合适的K值、可视化聚类结果以及理解不同聚类对业务的意义。 我们要讨论的是随机森林(Random Forest)。随机森林是一种集成学习方法,它结合了多个决策树的预测来提高模型的稳定性和准确性。随机森林在处理分类和回归问题时都表现出色。在Python中,`sklearn.ensemble.RandomForestClassifier`和`sklearn.ensemble.RandomForestRegressor`是实现随机森林的常用工具。案例中可能会展示如何调整随机森林的参数,比如树的数量、特征的随机选择比例,以及如何通过特征重要性来理解模型。 在学习这些案例时,你不仅会接触到基本的模型使用,还会了解到数据预处理的重要性,如缺失值处理、特征缩放、编码类别变量等。此外,交叉验证、网格搜索和调参也是机器学习实践中不可或缺的部分。Python中的`sklearn.model_selection`模块提供了这些功能,帮助优化模型性能。 "Python机器学习案例"涵盖了从基础的分类到聚类再到集成学习的关键概念,通过实践加深对这些算法的理解。通过深入研究这些案例,你将能够更好地应用机器学习技术解决实际问题,并为你的数据分析技能添砖加瓦。在学习过程中,记得不断思考如何将理论知识与实际项目相结合,以提升你的机器学习能力。
2024-12-21 19:43:32 6.97MB 机器学习
1
本文实例为大家分享了python实现多层感知器MLP的具体代码,供大家参考,具体内容如下 1、加载必要的库,生成数据集 import math import random import matplotlib.pyplot as plt import numpy as np class moon_data_class(object): def __init__(self,N,d,r,w): self.N=N self.w=w self.d=d self.r=r def sgn(self,x): if(x>0): return 1;
2024-12-18 23:08:06 65KB python python算法 多层感知器
1
1、文件“600519.csv”可以从网址 “http://quotes.money.163.com/service/chddata.html?code=0600519&start=20010827 &end=20221115&fields=TCLOSE;HIGH;LOW;TOPEN;LCLOSE;CHG;PCHG;TURNOVER;VOT URNOVER;VATURNOVER;TCAP;MCAP”下载 2、根据上面的网址,编写程序自动下载中证白酒指数中 17 支股票的数据(即下载 17 个 csv 文件),每支股票的数据应该是从上市起至 2022 年 11 月 29 日。 3、读取所下载的 17 个 csv 文件中有关股票的数据,将数据保存至一个 sqlite3 的数据 库中(sqlite3 的教程及接口示例可参见https://www.runoob.com/sqlite/sqlitetutorial.html)。 4、使用 DTW(Dynamic Time Warping)算法计算贵州茅台(600519)与其它 16 支股票的距离,并将这 16 个距离打印在屏幕上。
2024-12-17 16:14:44 22KB python 数据分析
1
无涯教程网-Python3教程离线版
2024-12-16 14:39:59 8.8MB 课程资源 PYTHON
1
Android 2.2 及 2.2以上版本 适用的Flash插件!可以用于手机、Pad等智能移动平台,让其支持Flash!
2024-12-14 23:28:38 4.22MB Flash 插件 Android插件 Flash插件
1
能在Android手机上播放flash的APK,没有依赖Adobe flash插件
2024-12-14 23:19:53 1.26MB android flash
1
标题中的“Flash for Android2.3”指的是Adobe Flash Player在Android 2.3 Gingerbread操作系统上的版本。在本文中,我们将深入探讨Flash Player的历史、它在Android设备上的应用以及与Android 2.3系统的关系。 Flash Player是由Adobe公司开发的一款多媒体软件,用于在Web上展示动画、视频和交互式内容。在20世纪90年代末到21世纪初,Flash成为了互联网上最广泛使用的多媒体平台之一,特别是在在线游戏、广告和视频流媒体领域。然而,随着移动设备的普及,尤其是智能手机和平板电脑,对移动平台的支持变得至关重要。 Android 2.3 Gingerbread是Google在2010年发布的Android操作系统的一个主要版本。在这个版本中,Google引入了对更高效能和更省电特性的优化,使其更适合智能手机和平板电脑。由于当时许多网页内容依赖Flash技术,因此Flash Player对于Android设备的用户体验至关重要。 Adobe Flash Player v10.1是专门为Android设计的第一个稳定版本,它允许用户在移动设备上浏览包含Flash内容的网页,观看在线视频,玩Flash游戏,并享受其他丰富的互联网体验。这个版本支持Android 2.1及更高版本,包括Android 2.3 Gingerbread。安装Flash Player v10.1的APK文件(如Flash_Player_v10.1_for_android_2.1.apk)可以让用户在兼容的Android设备上启用这些功能。 然而,值得注意的是,随着时间的推移,Flash逐渐被HTML5等现代标准所取代,因为HTML5无需额外插件即可提供多媒体内容,而且更加跨平台和安全。2012年,Adobe宣布将不再为移动浏览器开发新的Flash Player版本,并在2018年底完全停止了对Flash的技术支持。自此,大多数现代浏览器和操作系统已不再内置或支持Flash Player,包括Android的后续版本。 尽管Flash Player在Android 2.3时代扮演了重要角色,但现在它的使用已经过时。开发者和网站所有者已经转向使用HTML5、CSS3和JavaScript来创建跨平台的互动内容,而用户则应该确保他们的设备和浏览器支持这些现代标准,以获得最佳的网络体验。 Flash for Android 2.3代表了一个时代的结束,一个过渡期,当时移动设备正在努力适应传统Web内容,而现代Web标准尚未完全成熟。尽管现在Flash Player已经不再被推荐使用,但它在推动移动互联网发展方面留下了不可磨灭的印记。
2024-12-14 21:57:50 4.14MB flash
1