python机器学习案例

上传者: 35358021 | 上传时间: 2024-12-21 19:43:32 | 文件大小: 6.97MB | 文件类型: RAR
在本文中,我们将深入探讨"Python机器学习案例"这一主题,包括Logistic回归、K-均值聚类和随机森林等重要算法的应用。这些技术在数据科学领域具有广泛的应用,帮助我们从数据中发现模式、预测未来趋势以及进行决策。 让我们来看看Logistic回归。Logistic回归是一种分类算法,尽管它的名字中含有“回归”,但它主要用于解决二分类问题。在Python中,我们可以使用`sklearn`库中的`LogisticRegression`模型。这个模型基于Sigmoid函数,将连续的线性预测转换为概率输出。在案例中,你可能会看到如何准备数据、训练模型以及评估其性能,如计算准确率、查准率、查全率和AUC-ROC曲线。 接下来是K-均值聚类(K-Means)。这是一种非监督学习方法,用于发现数据集中的自然分组或类别。K-Means通过迭代找到最佳的类别中心,使得每个样本到最近类别中心的距离最小。在Python中,可以使用`sklearn.cluster.KMeans`实现。在案例中,你可能遇到如何选择合适的K值、可视化聚类结果以及理解不同聚类对业务的意义。 我们要讨论的是随机森林(Random Forest)。随机森林是一种集成学习方法,它结合了多个决策树的预测来提高模型的稳定性和准确性。随机森林在处理分类和回归问题时都表现出色。在Python中,`sklearn.ensemble.RandomForestClassifier`和`sklearn.ensemble.RandomForestRegressor`是实现随机森林的常用工具。案例中可能会展示如何调整随机森林的参数,比如树的数量、特征的随机选择比例,以及如何通过特征重要性来理解模型。 在学习这些案例时,你不仅会接触到基本的模型使用,还会了解到数据预处理的重要性,如缺失值处理、特征缩放、编码类别变量等。此外,交叉验证、网格搜索和调参也是机器学习实践中不可或缺的部分。Python中的`sklearn.model_selection`模块提供了这些功能,帮助优化模型性能。 "Python机器学习案例"涵盖了从基础的分类到聚类再到集成学习的关键概念,通过实践加深对这些算法的理解。通过深入研究这些案例,你将能够更好地应用机器学习技术解决实际问题,并为你的数据分析技能添砖加瓦。在学习过程中,记得不断思考如何将理论知识与实际项目相结合,以提升你的机器学习能力。

文件下载

资源详情

[{"title":"( 51 个子文件 6.97MB ) python机器学习案例","children":[{"title":"python机器学习案例","children":[{"title":"machineLearning","children":[{"title":"ml_7_mulabel.ipynb <span style='color:#111;'> 10.71KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"Untitled-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"decision tree 1.8-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"ml_GradientDescent-checkpoint.ipynb <span style='color:#111;'> 213.00KB </span>","children":null,"spread":false},{"title":"ml_randomForest-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"ml_7_mulabel-checkpoint.ipynb <span style='color:#111;'> 10.71KB </span>","children":null,"spread":false},{"title":"ml_2_logistic-regression-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"ml_3_logisticRes-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"ml_9_k-means-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"ml_9_KMEANS-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"ml_decisionTree-checkpoint.ipynb <span style='color:#111;'> 18.11KB </span>","children":null,"spread":false},{"title":"ml_8_overfit-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"ml_5_kcross-checkpoint.ipynb <span style='color:#111;'> 6.61KB </span>","children":null,"spread":false},{"title":"ml_kmeans_nba-checkpoint.ipynb <span style='color:#111;'> 112.09KB </span>","children":null,"spread":false},{"title":"ml_neuralnetwork-checkpoint.ipynb <span style='color:#111;'> 96.05KB </span>","children":null,"spread":false},{"title":"ml_6_clustering-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"ml_1_introduce-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"ml_buildDecisionTree-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"ml_loanProject-checkpoint.ipynb <span style='color:#111;'> 31.47KB </span>","children":null,"spread":false},{"title":"ml_4_Cross-validation-checkpoint.ipynb <span style='color:#111;'> 16.28KB </span>","children":null,"spread":false},{"title":"ml_DTandRandmoF_scikieLearn-checkpoint.ipynb <span style='color:#111;'> 16.03KB </span>","children":null,"spread":false}],"spread":false},{"title":"cleaned_loans_2007.csv <span style='color:#111;'> 4.53MB </span>","children":null,"spread":false},{"title":"ml_GradientDescent.ipynb <span style='color:#111;'> 213.00KB </span>","children":null,"spread":false},{"title":"decision tree 1.8.ipynb <span style='color:#111;'> 8.41KB </span>","children":null,"spread":false},{"title":"admissions.csv <span style='color:#111;'> 24.78KB </span>","children":null,"spread":false},{"title":"ml_6_clustering.ipynb <span style='color:#111;'> 24.76KB </span>","children":null,"spread":false},{"title":"ml_4_Cross-validation.ipynb <span style='color:#111;'> 16.28KB </span>","children":null,"spread":false},{"title":"iris.csv <span style='color:#111;'> 4.65KB </span>","children":null,"spread":false},{"title":"ml_buildDecisionTree.ipynb <span style='color:#111;'> 3.90KB </span>","children":null,"spread":false},{"title":"pga.csv <span style='color:#111;'> 2.24KB </span>","children":null,"spread":false},{"title":"nba_2013.csv <span style='color:#111;'> 70.80KB </span>","children":null,"spread":false},{"title":"auto-mpg.data <span style='color:#111;'> 29.58KB </span>","children":null,"spread":false},{"title":"Untitled.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"114_congress.csv <span style='color:#111;'> 4.39KB </span>","children":null,"spread":false},{"title":"ml_1_introduce.ipynb <span style='color:#111;'> 86.69KB </span>","children":null,"spread":false},{"title":"ml_loanProject.ipynb <span style='color:#111;'> 31.47KB </span>","children":null,"spread":false},{"title":"ml_9_KMEANS.ipynb <span style='color:#111;'> 7.02KB </span>","children":null,"spread":false},{"title":"ml_8_overfit.ipynb <span style='color:#111;'> 21.56KB </span>","children":null,"spread":false},{"title":"ml_neuralnetwork.ipynb <span style='color:#111;'> 96.05KB </span>","children":null,"spread":false},{"title":"loans_2007.csv <span style='color:#111;'> 14.79MB </span>","children":null,"spread":false},{"title":"ml_randomForest.ipynb <span style='color:#111;'> 4.37KB </span>","children":null,"spread":false},{"title":"filtered_loans_2007.csv <span style='color:#111;'> 6.48MB </span>","children":null,"spread":false},{"title":"ml_decisionTree.ipynb <span style='color:#111;'> 17.77KB </span>","children":null,"spread":false},{"title":"ml_2_logistic-regression.ipynb <span style='color:#111;'> 63.54KB </span>","children":null,"spread":false},{"title":"ml_DTandRandmoF_scikieLearn.ipynb <span style='color:#111;'> 15.63KB </span>","children":null,"spread":false},{"title":"ml_9_k-means.ipynb <span style='color:#111;'> 514B </span>","children":null,"spread":false},{"title":"ml_3_logisticRes.ipynb <span style='color:#111;'> 5.30KB </span>","children":null,"spread":false},{"title":"ml_kmeans_nba.ipynb <span style='color:#111;'> 112.09KB </span>","children":null,"spread":false},{"title":"ml_5_kcross.ipynb <span style='color:#111;'> 6.61KB </span>","children":null,"spread":false},{"title":"cleaned_loans2007.csv <span style='color:#111;'> 4.45MB </span>","children":null,"spread":false},{"title":"income.csv <span style='color:#111;'> 72.45KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明