[{"title":"( 51 个子文件 6.97MB ) python机器学习案例","children":[{"title":"python机器学习案例","children":[{"title":"machineLearning","children":[{"title":"ml_7_mulabel.ipynb <span style='color:#111;'> 10.71KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"Untitled-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"decision tree 1.8-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"ml_GradientDescent-checkpoint.ipynb <span style='color:#111;'> 213.00KB </span>","children":null,"spread":false},{"title":"ml_randomForest-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"ml_7_mulabel-checkpoint.ipynb <span style='color:#111;'> 10.71KB </span>","children":null,"spread":false},{"title":"ml_2_logistic-regression-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"ml_3_logisticRes-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"ml_9_k-means-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"ml_9_KMEANS-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"ml_decisionTree-checkpoint.ipynb <span style='color:#111;'> 18.11KB </span>","children":null,"spread":false},{"title":"ml_8_overfit-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"ml_5_kcross-checkpoint.ipynb <span style='color:#111;'> 6.61KB </span>","children":null,"spread":false},{"title":"ml_kmeans_nba-checkpoint.ipynb <span style='color:#111;'> 112.09KB </span>","children":null,"spread":false},{"title":"ml_neuralnetwork-checkpoint.ipynb <span style='color:#111;'> 96.05KB </span>","children":null,"spread":false},{"title":"ml_6_clustering-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"ml_1_introduce-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"ml_buildDecisionTree-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"ml_loanProject-checkpoint.ipynb <span style='color:#111;'> 31.47KB </span>","children":null,"spread":false},{"title":"ml_4_Cross-validation-checkpoint.ipynb <span style='color:#111;'> 16.28KB </span>","children":null,"spread":false},{"title":"ml_DTandRandmoF_scikieLearn-checkpoint.ipynb <span style='color:#111;'> 16.03KB </span>","children":null,"spread":false}],"spread":false},{"title":"cleaned_loans_2007.csv <span style='color:#111;'> 4.53MB </span>","children":null,"spread":false},{"title":"ml_GradientDescent.ipynb <span style='color:#111;'> 213.00KB </span>","children":null,"spread":false},{"title":"decision tree 1.8.ipynb <span style='color:#111;'> 8.41KB </span>","children":null,"spread":false},{"title":"admissions.csv <span style='color:#111;'> 24.78KB </span>","children":null,"spread":false},{"title":"ml_6_clustering.ipynb <span style='color:#111;'> 24.76KB </span>","children":null,"spread":false},{"title":"ml_4_Cross-validation.ipynb <span style='color:#111;'> 16.28KB </span>","children":null,"spread":false},{"title":"iris.csv <span style='color:#111;'> 4.65KB </span>","children":null,"spread":false},{"title":"ml_buildDecisionTree.ipynb <span style='color:#111;'> 3.90KB </span>","children":null,"spread":false},{"title":"pga.csv <span style='color:#111;'> 2.24KB </span>","children":null,"spread":false},{"title":"nba_2013.csv <span style='color:#111;'> 70.80KB </span>","children":null,"spread":false},{"title":"auto-mpg.data <span style='color:#111;'> 29.58KB </span>","children":null,"spread":false},{"title":"Untitled.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"114_congress.csv <span style='color:#111;'> 4.39KB </span>","children":null,"spread":false},{"title":"ml_1_introduce.ipynb <span style='color:#111;'> 86.69KB </span>","children":null,"spread":false},{"title":"ml_loanProject.ipynb <span style='color:#111;'> 31.47KB </span>","children":null,"spread":false},{"title":"ml_9_KMEANS.ipynb <span style='color:#111;'> 7.02KB </span>","children":null,"spread":false},{"title":"ml_8_overfit.ipynb <span style='color:#111;'> 21.56KB </span>","children":null,"spread":false},{"title":"ml_neuralnetwork.ipynb <span style='color:#111;'> 96.05KB </span>","children":null,"spread":false},{"title":"loans_2007.csv <span style='color:#111;'> 14.79MB </span>","children":null,"spread":false},{"title":"ml_randomForest.ipynb <span style='color:#111;'> 4.37KB </span>","children":null,"spread":false},{"title":"filtered_loans_2007.csv <span style='color:#111;'> 6.48MB </span>","children":null,"spread":false},{"title":"ml_decisionTree.ipynb <span style='color:#111;'> 17.77KB </span>","children":null,"spread":false},{"title":"ml_2_logistic-regression.ipynb <span style='color:#111;'> 63.54KB </span>","children":null,"spread":false},{"title":"ml_DTandRandmoF_scikieLearn.ipynb <span style='color:#111;'> 15.63KB </span>","children":null,"spread":false},{"title":"ml_9_k-means.ipynb <span style='color:#111;'> 514B </span>","children":null,"spread":false},{"title":"ml_3_logisticRes.ipynb <span style='color:#111;'> 5.30KB </span>","children":null,"spread":false},{"title":"ml_kmeans_nba.ipynb <span style='color:#111;'> 112.09KB </span>","children":null,"spread":false},{"title":"ml_5_kcross.ipynb <span style='color:#111;'> 6.61KB </span>","children":null,"spread":false},{"title":"cleaned_loans2007.csv <span style='color:#111;'> 4.45MB </span>","children":null,"spread":false},{"title":"income.csv <span style='color:#111;'> 72.45KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":true}]