内容概要:本文详细介绍了基于AD9173的Verilog源代码驱动实现方案。该方案针对500MHz参考时钟,采用内部PLL方式,实现12G的DA时钟和12G的DA更新率。它支持DA内部上变频及24倍插值技术,JESD204线速率为10Gbps的4x lane双链路模式。代码包含详细的注释,涵盖JESD204B配置、SPI配置、DDS基带数据生成及数据拼接等功能,稍加修改即可应用于实际工程项目。 适合人群:具备FPGA开发经验的研发人员和技术专家。 使用场景及目标:适用于需要高效处理大带宽信号转换的应用场景,如通信设备、雷达系统、测试测量仪器等。目标是帮助工程师快速掌握AD9173的Verilog驱动开发,缩短项目周期并提高系统性能。 其他说明:该方案不仅提供了完整的Verilog源代码,还包括了详细的调试信息和修改指南,有助于开发者进行二次开发和优化。
2025-06-24 15:33:46 685KB FPGA PLL DAC Verilog
1
CD4046锁相环构成的FM调制电路 CD4046锁相环的应用示例
2025-06-19 20:04:31 4.19MB 锁相环PLL原理与应用
1
深入解析VESC无感非线性磁链观测器:源码实践、参考文献指南与仿真模型全解析,《深入解析VESC无感非线性磁链观测器:源码揭秘、参考文献导航与仿真模型实践》,VESC无感非线性磁链观测器+PLL(源码+参考文献+仿真模型) ①源码:VESC的无感非线性观测器代码,并做了简单的调试,可以做到0速启动。 代码注释非常详细,快速入门 ②参考文献(英文+翻译):为VESC非线性观测器的lunwen出处 ③对应的simulinK仿真 大名鼎鼎的VESC里面的观测器。 对学习非线性观磁链测器有很大帮助 图一:为观测位置角度与真实角度波形。 1、《bldc-dev_fw_5_02》为VESC的官方源代码,里面使用了非线性观测器,但是工程很大,功能太多,很难学习,并且使用了操作系统,很难自己使用。 2、《08_ARM_PMSM_磁链观测器》为STM32F405407平台的代码,原本采用VF启动+smo方案。 在该代码框架上,我移植了VESC的无感非线性观测器代码,并做了简单的调试,基本可以0速启动,但带载能力不行,可能还需要进一步调参。 3、《本杰明位置速度观测器》为VESC非线性观测器的lunwen
2025-06-17 10:31:13 6.81MB 数据结构
1
内容概要:本文详细介绍了锁相环(PLL)的MATLAB和Simulink仿真方法,涵盖三个主要方面:相位噪声拟合、稳定性和小数分频建模。首先,作者分享了多个版本的相位噪声拟合仿真代码,展示了如何将实测数据应用于经典三阶PLL模型中,确保拟合精度。其次,通过绘制伯德图进行稳定性分析,强调了环路带宽和相位裕度的重要性。最后,针对2.4GHz的小数分频PLL,利用Simulink实现了Delta-Sigma调制器配置,讨论了过采样率和电荷泵电流对性能的影响。所有代码均经过实际项目验证,具有很高的实用价值。 适合人群:从事射频电路设计、通信系统开发的技术人员,尤其是需要深入了解PLL特性的工程师。 使用场景及目标:①掌握PLL相位噪声建模的方法和技术细节;②学会通过伯德图评估PLL系统的稳定性;③熟悉小数分频PLL的设计与优化技巧。 其他说明:文中提供的代码和模型不仅适用于理论研究,还能直接应用于实际工程项目中。建议读者在实践中不断调整参数,以获得最佳仿真效果。
2025-05-29 18:19:53 727KB
1
基于滑模观测器的永磁同步电机无感FOC算法研究:包括PLL位置提取与多种开关函数的对比分析,仿真模型搭建参考文献全解析,基于滑模观测器的永磁同步电机无感FOC 1.采用两相静止坐标系的SMO,位置提取方法采用PLL(锁相环),开关函数包括符号函数、sigmoid函数、饱和函数,可进行对比分析; 2.提供算法对应的参考文献和仿真模型仿真模型纯手工搭建 ,基于滑模观测器; 永磁同步电机无感FOC; 两相静止坐标系SMO; 位置提取PLL; 开关函数对比分析(符号函数、sigmoid函数、饱和函数); 算法参考文献; 仿真模型纯手工搭建。,基于SMO与多种开关函数的永磁同步电机无感FOC研究及仿真分析
2025-05-26 16:29:59 319KB 哈希算法
1
基于CD4046锁相环PLL设计与LCD1602显示功能,含电源原理图、PCB图及Proteus仿真源文件,基于CD4046锁相环PLL设计,LCD显示及按键调频,CD4522 N分频功能实现,附带电源原理图、PCB图等全套资料,基于cd4046的锁相环pll设计,pcb 只是资料 功能: 1.LCD1602显示屏显示当前频率 2.两个按键任意设置1-999khz频率 3.三个CD4522作为N分频 资料包括 1.完整电源原理图,PCB图,BOM表源文件 2.完整项目工程文件 3.proteus仿真源文件 ,基于cd4046的锁相环pll设计; LCD1602显示; 按键设置频率; N分频; 完整电源原理图; PCB图; BOM表源文件; Proteus仿真。,基于CD4046的PLL锁相环设计:多频可调LCD显示电路PCB实现方案
2025-04-21 20:28:33 5.82MB 开发语言
1
锁相环(PLL:Phase-lockedloops)是利用反馈(Feedback)控制原理实现频率及相位的同步技术。其核心作用是保持电路输出的时钟与外部参考时钟同步,从而在外部参考时钟的频率或相位发生变化时,PLL会检测到这种变化并通过内部反馈系统调节输出频率,直到两者重新同步,这种同步也被称为“锁相”。 PLL具有以下特征:无剩余频差锁定,良好的窄带载波跟踪性能,以及良好的宽带调制跟踪性能。在FPGA中实现UART通讯协议时,稳定时钟是稳定通讯的基础和前提。PLL的应用有助于提高FPGA中UART通讯的正确性、高效性和稳定性。 Quartus II是一款由Altera公司开发的FPGA/CPLD设计软件,广泛应用于电子系统的设计、模拟、测试和配置。在Quartus II中调用PLL模块时,首先要在工程下,通过主窗口的菜单栏选择“Tools->MegeWizard Plug-In Manager”。此操作将进入一个配置界面,需要设置PLL例化选项、器件库、编译语言以及PLL例化输出文件名。 选择PLL例化选项时,应选中“Installed Plug-Ins->I/O->ALTPLL”。器件库选择应依据所用FPGA系列,如本例程中使用的Cyclone IV系列器件库。编译语言选项应依据工程需求,本例中以Verilog HDL为例,故选择Verilog HDL。PLL例化输出文件名及其路径可以根据工程目录或自定义文件夹设置,如果文件不存在,需手动建立,并注意文件后缀名为“.v”。 完成上述设置后,进入PLL锁相环设置输入频率向导。在该页面需要设置PLL锁相环的输入频率,该频率根据使用的FPGA型号有所不同。例如,若使用25MHz晶振,则在该页面中设置输入频率为25MHz。 在接下来的配置页面中,可以设置PLL输出的多个频率的时钟信号。每个时钟信号的配置包括是否使用该时钟信号、调节输出时钟频率、改变占空比等。可通过直接输入频率或选择分频、倍频输入系数来调节输出时钟频率。分频和倍频可同时使用以产生更多的频率范围。 在EDA选择界面中可以根据需要进行选择,若没有特殊需求,可直接点击Next进入下一项。在Summary界面中选择输出文件,点击Finish后PLL的IP核例化文件生成结束。 完成以上步骤后,PLL模块就配置完成,可以通过Quartus II的EDA仿真工具进行仿真测试,验证PLL模块的功能是否正确。这样,开发者就可以在Quartus II环境下使用PLL模块优化FPGA设计,提高设计的性能和效率。
2025-04-20 19:34:28 710KB QuartusII Altera FPGA
1
基于PLL的SMO滑模观测器算法在永磁同步电机无传感器矢量控制中的应用及其与反正切SMO的对比:有效消除转速抖动,基于PLL的SMO滑模观测器算法在永磁同步电机无传感器矢量控制中的应用及其与反正切SMO的对比:有效消除转速抖动,基于PLL的SMO滑模观测器算法,永磁同步电机无传感器矢量控制,跟基于反正切的SMO做对比,可以有效消除转速的抖动。 ,基于PLL的SMO滑模观测器算法; 永磁同步电机无传感器矢量控制; 反正切SMO; 转速抖动消除。,基于PLL SMO滑模观测器:永磁同步电机无传感器矢量控制新算法,优化抖动消除效能
2025-04-11 20:56:12 1.17MB edge
1
在 FPGA 设计中,锁相环(Phase-Locked Loop,PLL)和分频乘数单元(Multiplier-Divider,MMCM)是实现时钟管理和频率合成的关键组件。它们能够生成不同频率的时钟信号,满足设计中不同模块的时序需求。在Xilinx FPGA平台中,PLL和MMCM是内置的时钟管理工具,通过它们可以实现灵活的时钟频率配置。本文将深入探讨如何使用Verilog语言来动态生成PLL和MMCM的参数,以及在Vivado中进行仿真验证。 PLL和MMCM的基本工作原理是通过反馈机制使输出时钟与参考时钟保持相位锁定,从而实现频率的倍增、分频或相位调整。PLL通常由鉴相器(Phase Detector)、低通滤波器(Low Pass Filter,LPF)、压控振荡器(Voltage-Controlled Oscillator,VCO)等部分组成。MMCM是PLL的一种简化版本,不包含VCO,而是通过直接调整内部的分频系数来改变输出频率。 在Verilog中,我们可以编写模块来计算PLL_M、PLL_D、PLL_N这些关键参数。PLL_M是分频因子,PLL_D是倍频因子,PLL_N是输入分频因子。通过适当的数学运算,可以确保输出频率满足设计要求。例如,输出频率(f_out)可以通过以下公式计算: \[ f_{out} = \frac{f_{ref}}{PLL_N} * PLL_M * PLL_D \] 其中,\( f_{ref} \) 是参考时钟频率。编写Verilog代码时,我们需要根据目标频率和参考时钟频率计算出合适的PLL参数,并将这些参数传递给PLL或MMCM模块。 在Vivado中,可以创建一个新的项目并导入这个名为`pll_cfg_project_1`的工程。在这个工程中,应该包含了Verilog源文件和仿真测试平台。Vivado提供了高级的IP核生成工具,允许用户通过图形化界面设置PLL或MMCM的参数。但是,通过Verilog代码动态生成参数更具有灵活性,可以适应各种复杂的时钟需求。 为了验证设计,我们需要搭建一个仿真环境,模拟不同的输入条件,如不同的PLL参数和参考时钟频率。Vivado提供了综合、实现和仿真等功能,可以帮助我们检查设计的正确性和性能。在仿真过程中,可以观察输出时钟是否准确地达到了预期的频率,同时也要关注时钟的抖动和相位误差。 在实际应用中,动态配置PLL或MMCM参数可能涉及到复杂数学运算和实时控制,例如在系统运行过程中改变时钟频率以适应负载变化。这就需要在Verilog代码中实现一个控制器模块,该模块接收外部命令并根据需求更新PLL参数。 总结来说,本篇内容涵盖了Xilinx FPGA中的PLL和MMCM的动态配置,以及如何使用Verilog进行参数计算和Vivado仿真的方法。理解并掌握这些知识对于进行高性能、低延迟的FPGA设计至关重要。通过提供的工程示例,开发者可以学习到具体的实现技巧,并应用于自己的项目中,以实现灵活的时钟管理和频率生成。
2025-04-02 17:25:12 547KB fpga
1
标题中的"SOGI_SOGI-PLL_SOGI_pwm_SOGI仿真_wayock_"涉及到的是一个与电力电子技术相关的仿真项目,特别关注SOGI(Second Order Generalized Integrator)和PLL(Phase-Locked Loop)的运用,以及PWM(Pulse Width Modulation)技术。在电力电子领域,这些是关键概念: 1. **SOGI(第二阶广义积分器)**:SOGI是一种线性电路,用于模拟非线性的系统行为。它具有两个积分器,能够处理各种信号,如正弦、方波甚至噪声,常用于控制系统的滤波和稳定。 2. **PLL(锁相环)**:PLL是一种电路,用于同步或锁定一个振荡器的相位到参考信号,通常用于频率和相位的同步。在电力电子中,PLL用于跟踪电网电压的频率和相位,对于电源系统同步和控制至关重要。 3. **PWM(脉宽调制)**:PWM是一种数字调制技术,通过改变脉冲宽度来改变平均功率。在电力电子中,PWM广泛应用于逆变器、开关电源和电机驱动,因为它能有效控制输出电压和电流,同时减少损耗。 4. **仿真**:在工程领域,仿真是一种使用计算机模型预测和分析系统行为的方法。此处的“SOGI仿真”可能指的是使用MATLAB/Simulink或其他仿真工具对SOGI-PLL系统进行建模和测试。 5. **wayock**:这个词在上下文中可能是用户或项目的特定术语,可能指某种特定的仿真方法或者配置,但没有明确的通用定义。在电力电子的背景下,可能是一个人名、工作流或特定的仿真策略。 根据描述,“SOGI一个仿真,自己搭的,功能是对的,可以测试。”这意味着作者已经创建了一个SOGI系统模型,并且包含了PLL和PWM组件,该模型经过验证,功能正确,可以用来进行进一步的测试和分析。 在压缩包中的"SOGI.slx"文件很可能是MATLAB Simulink的模型文件,其中包含了SOGI、PLL和PWM的仿真电路图。使用这个模型,用户可以调整参数,观察不同条件下的系统行为,评估其性能和稳定性。为了深入理解并优化这个系统,用户需要具备电力电子、控制理论和仿真工具的知识。
2025-03-29 19:41:44 34KB SOGI
1