哈明窗matlab代码DASC(密集自适应自相关)描述符 2.0版(2016年4月14日) 由Seungryong Kim()贡献。 这段代码是用MATLAB编写的,并实现了DASC描述符[]。 用法 mexDASC.cpp 设置SIFTflow代码[2] 启动main.m 参数 M_half :大窗口M的一半大小 N_half :大窗口N的一半大小 epsil :用于FastGuidedFilter的epsilon [3] downSize : downSize缩小因子s [3] sigma_s :用于递归过滤器(RF)[4] sigma_r :用于递归过滤器(RF)[4] iter :用于递归滤波器(RF)[4] 输入和输出 输入:输入图像1(例如img1.png ),输入图像2(例如img2.png ) 输出:来自图像2的扭曲图像(例如warp2.png ),流结果(例如flow.png ) 笔记 该代码仅供学术使用。 禁止在任何与商业或工业相关的活动中使用该代码。 如果您使用我们的代码,请引用本文。 @InProceedings{Kim2015, author = {Seung
2025-12-24 17:00:56 2.88MB 系统开源
1
内容概要:本文研究了民用空域中多无人机系统的最优碰撞避免决策机制,提出了一种基于Matlab代码实现的优化控制方法,旨在解决多无人机在复杂空域环境中飞行时可能发生的碰撞风险。通过构建合理的动力学模型与约束条件,结合优化算法实现无人机之间的安全避障,确保飞行任务的高效与安全。文中详细阐述了系统架构、数学建模过程、优化求解策略及仿真验证结果,展示了该方法在实际应用场景中的有效性与可行性。; 适合人群:具备一定控制理论基础和Matlab编程能力的科研人员、自动化或航空航天相关专业的研究生及工程技术人员。; 使用场景及目标:①应用于多无人机协【UAV-碰撞避免】民用空域多无人机最优碰撞避免决策系统研究(Matlab代码实现)同飞行控制系统设计;②为民用空域管理提供安全可靠的避障解决方案;③作为无人机自主决策算法的研究与教学参考。; 阅读建议:建议读者结合Matlab代码进行仿真实践,深入理解模型构建与优化求解的关键步骤,同时可扩展至动态障碍物环境或其他智能体协同控制场景中进行进一步研究。
2025-12-24 10:45:27 71KB 无人机 碰撞避免 MATLAB 模型预测控制
1
维纳滤波是GRACE数据处理的一种空间滤波方法,它是一种各项同性滤波器,通过设计滤波器,对信号进行线性卷积得到的实际输出信号,使其与期望输出信号满足最小二乘,从而得到维纳滤波函数。通过matlab代码结合网上资源写了计算阶方差的方法,并实现了维纳滤波计算到平滑函数的过程。该程序包包含测试数据、主调函数和相关子函数。
2025-12-19 16:11:25 98.97MB matlab 维纳滤波 空间滤波
1
遗传算法是一种模拟自然选择和遗传机制的搜索启发式算法,它在解决复杂的优化问题方面展现出强大的能力。在物流管理中,货位分配问题是影响仓储效率的关键因素,其目标是将货物合理地分配到仓库中的相应位置,以减少取货时间、提高作业效率和空间利用率。基于遗传算法的货位分配优化策略,是通过构建一个合适的数学模型,并利用遗传算法来求解该模型,进而得到货位分配的最优解或者满意解。 MATLAB是一种用于数值计算、可视化的编程环境,它提供了强大的工具箱用于算法的实现和数据分析,使得研究者和工程师能够快速地实现算法原型并进行验证。在货位分配优化问题中,利用MATLAB可以有效地编写遗传算法的代码实现,通过编写相应的遗传算法操作函数,如选择、交叉和变异等,来模拟生物进化过程中的自然选择机制,从而得到问题的最优解或近似最优解。 在进行货位分配优化时,必须考虑到实际操作中的各种约束条件,如货物的存储期限、货物的体积和重量限制、以及作业的先后顺序等。遗传算法通过适应度函数来评估个体的优劣,适应度高的个体有更大的机会被选中并遗传给下一代。这个适应度函数往往需要综合考虑上述约束条件,以及货位分配的目标,如最大化存储空间利用率、最小化取货距离等。 在MATLAB中实现遗传算法时,代码需要能够自定义编码方式,适应度函数,选择策略,交叉和变异操作等。具体到货位分配问题,编码方式可以是将货位位置信息转换成一串二进制或实数编码,适应度函数则是根据货位分配目标函数定义。选择策略可以采用轮盘赌、锦标赛选择等方式。交叉操作可能是单点交叉、多点交叉或均匀交叉。变异操作可以是简单地翻转某一位,或是按一定的概率随机改变某些位的值。 在处理货位分配优化问题时,剪枝技术可以被应用于遗传算法中,以减少无效或低效的搜索空间。剪枝的基本思想是减少搜索树中不必要或低价值的节点,从而加快搜索进程并提高搜索效率。在遗传算法中,剪枝可以应用于交叉和变异操作之后,通过评估新生成个体的适应度,若低于某个阈值则可以考虑放弃这一部分搜索路径,避免在后续迭代中浪费计算资源。 通过上述方法,研究者和工程师可以利用MATLAB编写出高效的货位分配优化代码,对货位分配问题进行模拟和优化。这样的研究和实践不仅能够提升仓库管理的智能化水平,而且可以显著提高物流系统的整体效率和反应速度,降低物流成本,从而为企业带来更大的经济效益。
2025-12-19 10:07:03 102KB
1
内容概要:本文研究基于深度强化学习的多无人机辅助边缘计算网络路径规划,旨在通过深度强化学习技术优化多无人机在复杂环境下的飞行路径,以提升边缘计算网络的服务效率与资源利用率。文中结合Matlab代码实现,详细探讨了多无人机协同工作的路径规划模型,涵盖任务分配、避障、能耗优化等关键问题,有效支持边缘计算场景下的低延迟、高可靠通信需求。; 适合人群:具备一定编程基础和无人机、边缘计算或强化学习背景的科研人员及研究生;适用于从事智能优化、路径规划或网络资源调度相关方向的研究者。; 【无人机路径规划】基于深度强化学习的多无人机辅助边缘计算网络路径规划(Matlab代码实现) 使用场景及目标:①解决多无人机在动态环境中高效执行边缘计算任务的路径规划问题;②探索深度强化学习在复杂多智能体系统协同控制中的实际应用;③为边缘计算网络提供低延迟、高稳定性的无人机辅助通信方案。; 阅读建议:建议结合提供的Matlab代码进行实践,重点关注算法模型的设计思路与仿真实验设置,深入理解深度强化学习在路径规划中的训练机制与优化策略。
1
分数阶傅里叶变换(Fractional Fourier Transform, FRFT)是对传统傅里叶变换的拓展,它通过非整数阶的变换方式,能够更有效地处理非线性信号以及涉及时频局部化的问题。在信号处理领域,FRFT尤其适用于分析非平稳信号,例如在雷达、声纳和通信系统中,对线性调频(Linear Frequency Modulation, LFM)信号的分析具有显著优势。LFM信号是一种频率随时间线性变化的信号,因其具有宽频带和良好的时频分辨率,被广泛应用于雷达和通信系统。FRFT能够更精准地捕捉LFM信号的时间和频率信息,相比普通傅里叶变换,其性能更为出色。 MATLAB是一种强大的数值计算和科学计算工具,拥有丰富的函数库和用户友好的界面。在MATLAB中实现FRFT,通常需要编写自定义函数或利用信号处理工具箱中的相关函数。例如,一个名为“frft”的文件可能是用于执行分数阶傅里叶变换的MATLAB脚本或函数,并展示其在信号处理中的应用。FRFT的正确性验证通常通过对比变换前后信号的特性来完成,比如评估信号的重构质量、信噪比等。具体而言,可以通过计算原始信号与经过FRFT处理后的信号之间的相似度,或者对比LFM信号的关键参数(如初始频率、扫频率和持续时间)是否在变换后得到准确恢复。 在MATLAB代码实现中,通常包含以下步骤:首先,生成LFM信号模型,设定其初始频率、扫频率、持续时间和采样率等参数;其次,利用自定义的frft函数对LFM信号进行分数阶傅里叶变换;接着,使用MATLAB的可视化工具(如plot或imagesc)展示原始信号的时域和频域表示,以及FRFT后的结果,以便直观对比;最后,通过计算均方误差、峰值信噪比等指标来评估FRFT的性能。深入理解FRFT的数学原理并结合MATLAB编程技巧,可以实现对LFM信号的有效分析和处理。这个代码示例不仅展示了理论知识在
2025-12-16 15:43:25 56KB 分数阶傅里叶变换 MATLAB代码
1
基于GADF(Gramian Angular Difference Field)、CNN(卷积神经网络)和LSTM(长短期记忆网络)的齿轮箱故障诊断方法。首先,通过GADF将原始振动信号转化为时频图,然后利用CNN-LSTM模型完成多级分类任务,最后通过T-SNE实现样本分布的可视化。文中提供了具体的Matlab代码实现,包括数据预处理、GADF时频转换、CNN-LSTM网络构建以及特征空间分布的可视化。实验结果显示,在东南大学齿轮箱数据集上,该方法达到了96.7%的准确率,显著优于单一的CNN或LSTM模型。 适合人群:从事机械故障诊断的研究人员和技术人员,尤其是对深度学习应用于故障诊断感兴趣的读者。 使用场景及目标:适用于需要对齿轮箱进行高效故障诊断的应用场合,如工业设备维护、智能制造等领域。目标是提高故障检测的准确性,减少误判率,提升设备运行的安全性和可靠性。 其他说明:该方法虽然效果显著,但在实际应用中需要注意计算资源的需求,特别是在工业现场部署时,建议预先生成时频图库以降低实时计算压力。
2025-12-15 21:12:41 731KB
1
psf的matlab代码svDeconRL 基于Richardson-Lucy算法的总空间正则化的自由空间变异卷积 随该代码发布的出版物已发布在(开放获取)[1]中: Raphaël Turcotte, Eusebiu Sutu, Carla C. Schmidt, Nigel J. Emptage, Martin J. Booth (2020). "Title", Journal, doi: X 该存储库包含使用具有空间变异点响应的系统对2D图像进行反卷积所需的MATLAB代码。 反卷积基于经过改进的Richardson-Lucy算法,该算法具有总变化正则化以解决空间变化点响应。 还提供了样本数据集。 代码: RLTV_SVdeconv.m:使用基于特征PSF分解的空间变量PSF模型执行具有总变化(TV)正则化的Richardson-Lucy反卷积的功能。 TVL1reg.m:函数使用L1范数在数组M的散度上计算RL算法的总变化正则化因子 ScriptLRTV.m:针对几种模式,迭代次数和TV系数值的给定输入,迭代调用RLTV_SVdeconv()函数的示例脚本。 makeEdgeA
2025-12-10 18:36:25 166.86MB 系统开源
1
在IT领域,尤其是在图像处理和计算机视觉应用中,网络摄像头是一种常见的输入设备。本文将深入探讨如何使用MATLAB这一强大的编程环境与网络摄像头进行交互,从而实现图像的捕获、处理和分析。MATLAB(矩阵实验室)是MathWorks公司开发的一种编程语言,尤其适合科学计算和工程应用。 我们需要理解MATLAB中的`imread`函数,这是连接网络摄像头的基础。`imread`通常用于读取本地文件中的图像,但在连接网络摄像头时,我们可以传递一个特殊的参数来实现这一功能。例如,输入`imread('video://0')`会尝试打开默认的网络摄像头(通常为0号设备)。这里的`video://`前缀告诉MATLAB我们要从视频源(即摄像头)读取数据。 接下来,为了持续获取摄像头的实时图像流,我们需要使用`VideoReader`类。这是一个面向对象的接口,可以创建一个对象来读取连续的视频帧。以下是一个简单的示例: ```matlab camera = VideoReader('video://0'); firstFrame = readFrame(camera); ``` 这段代码创建了一个指向摄像头的`VideoReader`对象,并读取了第一帧图像。`readFrame`函数可以反复调用以获取后续帧。 除了捕获图像,我们还可以对图像进行各种处理,如灰度化、直方图均衡化、滤波等。例如,将彩色图像转换为灰度图像,可以使用`rgb2gray`函数: ```matlab grayFrame = rgb2gray(firstFrame); ``` 此外,MATLAB提供了丰富的图像处理函数,如边缘检测(`edge`)、特征检测(`detectFeatures`)和图像配准(`registerImage`)等,可以根据实际需求进行选择。 为了实时显示摄像头的图像,我们可以利用`imshow`函数。结合`while`循环,可以创建一个简单的实时预览窗口: ```matlab while isDone(camera) frame = readFrame(camera); imshow(frame); end ``` 这段代码会持续读取摄像头的帧并显示,直到`isDone`函数返回`true`,表示没有更多的帧可供读取。 在MATLAB中,网络摄像头的使用不仅限于简单的图像捕获和显示。通过结合其他高级功能,如机器学习库(如`Classification Learner App`)、深度学习工具箱(`Deep Learning Toolbox`)等,可以实现复杂的计算机视觉任务,如人脸识别、物体识别或行为分析。 在实际应用中,你可能需要根据具体的需求调整代码,比如调整摄像头的分辨率、帧率,或者处理捕获的图像数据。MATLAB的用户友好界面和强大的功能使其成为进行此类开发的理想选择。在使用`camara_web.zip`这个压缩包时,里面可能包含更具体的示例代码和指导,帮助你更好地理解和实现网络摄像头与MATLAB的集成。 MATLAB提供的工具和函数使连接和操作网络摄像头变得简单而直观。通过掌握这些基础知识,你可以构建自己的图像处理系统,进行科学研究、工程设计或创意项目,充分发挥MATLAB在图像处理领域的潜力。
2025-12-08 19:33:13 3KB matlab
1
内容概要:本文围绕基于OFDM技术的水下声学通信多径信道图像传输展开研究,重点探讨了在复杂水下环境中利用OFDM(正交频分复用)技术克服多径效应、实现高效图像传输的方法。文中详细介绍了系统模型构建、信道特性分析、OFDM调制解调流程,并通过Matlab代码实现了完整的仿真系统,包括信号调制、循环前缀插入、信道均衡、图像编解码与传输性能评估等关键环节。研究验证了OFDM在抑制水声信道多径干扰方面的有效性,提升了图像传输的可靠性与质量。; 适合人群:具备通信原理、数字信号处理基础,熟悉Matlab编程,从事水基于OFDM技术的水下声学通信多径信道图像传输研究(Matlab代码实现)下通信、无线通信或图像传输相关研究的研究生及科研人员。; 使用场景及目标:①掌握OFDM在水声通信中的应用机制;②理解多径信道对图像传输的影响及应对策略;③通过Matlab仿真实践提升对通信系统设计与优化的能力; 阅读建议:此资源以Matlab仿真为核心,建议读者结合理论推导与代码实现同步学习,重点关注信道建模与系统抗干扰设计部分,并可扩展至其他复杂环境下的通信系统研究。
2025-12-06 20:33:46 49KB OFDM 多径信道 图像传输 Matlab
1