基于NSGA-II算法的水电-光伏多能互补系统协调优化调度模型研究,《基于NSGA-II的水电-光伏多能互补协调优化调度模型仿真及代码实现》,MATLAB代码:基于NSGA-II的水电-光伏多能互补协调优化调度 关键词:NSGA-II算法 多目标优化 水电-光伏多能互补 参考文档:《自写文档》基本复现; 仿真平台:MATLAB 主要内容:代码主要做的是基于NSGA-II的水电-光伏互补系统协调优化模型,首先,结合水电机组的运行原理以及运行方式,构建了水电站的优化调度模型,在此基础上,进一步考虑光伏发电与其组成互补系统,构建了水-光系统互补模型,并采用多目标算法,采用较为新颖的NSGA-II型求解算法,实现了模型的高效求解。 ,基于NSGA-II的多目标优化; 水电-光伏多能互补; 协调优化调度; 水电光伏系统模型; 优化求解算法; MATLAB仿真。,基于NSGA-II算法的水电-光伏多能互补调度优化模型研究与应用
2025-09-06 21:22:32 789KB xhtml
1
自动驾驶技术是现代智能交通系统的核心组成部分,而定位是自动驾驶中不可或缺的一环。毫米波雷达作为一项重要的传感器技术,因其在恶劣环境下的高稳定性、抗干扰能力和远距离探测能力,被广泛应用在自动驾驶车辆的定位系统中。本文将深入探讨毫米波雷达在自动驾驶定位中的应用以及相关的Matlab代码实现。 毫米波雷达的工作原理基于电磁波的发射和接收。它通过发射毫米级别的波长的电磁波,然后接收这些波从周围物体反射回来的信息,计算目标的距离、速度和角度。这些信息对于构建环境感知模型至关重要,是自动驾驶车辆进行精确定位的基础。 在自动驾驶定位中,毫米波雷达的主要任务包括: 1. **距离测量**:通过测量发射信号与回波信号之间的时间差,可以计算出目标与雷达之间的距离。 2. **速度测量**:利用多普勒效应,雷达可以检测到目标相对于雷达的相对速度。 3. **角度测量**:通过天线阵列的设计,可以确定目标相对于雷达的方位角。 Matlab作为一种强大的数学和仿真工具,被广泛用于毫米波雷达系统的建模和算法开发。在"Automatic_Positioning_Radar_Matlab-master"这个压缩包中,可能包含了以下关键内容: 1. **雷达信号处理算法**:如脉冲压缩、匹配滤波等,用于提高雷达的分辨率和探测性能。 2. **数据融合模块**:自动驾驶系统通常集成了多种传感器,毫米波雷达数据可能需要与其他传感器(如激光雷达、摄像头)的数据进行融合,以提高定位精度。 3. **卡尔曼滤波**:这是一种常用的数据平滑和预测方法,常用于消除测量噪声,提供更稳定的定位结果。 4. **目标检测与跟踪**:通过检测雷达回波中的特征点,识别并跟踪周围的障碍物,为路径规划提供输入。 5. **仿真场景搭建**:可能包含用于测试和验证雷达定位算法的虚拟环境。 了解了这些基础知识后,开发者可以通过阅读和运行提供的Matlab代码,学习如何实现毫米波雷达在自动驾驶定位中的具体功能,并对算法进行优化。此外,这也有助于理解实际工程中遇到的问题,比如如何处理多径效应、如何提高目标识别的准确性等。 "自动驾驶定位毫米波雷达代码"是一个宝贵的学习资源,它涵盖了毫米波雷达在自动驾驶中的核心技术和应用,以及相关的Matlab实现,对于自动驾驶技术的研究者和开发者来说,具有很高的参考价值。通过深入研究这些代码,我们可以更好地理解和掌握毫米波雷达在自动驾驶系统中的作用,为未来的智能交通系统开发打下坚实的基础。
1
液滴模拟与多松弛伪势模型代码,格子玻尔兹曼模拟(LBM): MRT多松弛伪势模型下的液滴蒸发、冷凝与沸腾现象研究——大密度比模型与能量方程的Matlab代码实现,格子玻尔兹曼模拟 LBM代码 MRT 多松弛伪势模型 大密度比模型 能量方程 matlab代码 液滴蒸发 液滴冷凝 沸腾 ,格子玻尔兹曼模拟; LBM代码; MRT多松弛; 伪势模型; 大密度比模型; 能量方程; Matlab代码; 液滴蒸发; 液滴冷凝; 沸腾。,格子玻尔兹曼模拟LBM-MRT多松弛伪势模型能量方程与液滴相变MATLAB代码
2025-09-05 09:16:32 466KB rpc
1
一维线性卡尔曼滤波,MATLAB代码
2025-09-04 10:44:17 4KB MATLAB
1
基于混合决策规则与Wasserstein距离的分布式鲁棒多阶段框架:适应风电渗透下的机组不确定性承诺与调度优化,MATLAB代码:基于混合决策规则的不确定单元承诺的完全自适应分布鲁棒多阶段框架 关键词:分布式鲁棒DRO wasserstwin metric Unit commitment 参考文档:无 仿真平台:MATLAB Cplex Mosek 主要内容:随着风电越来越多地渗透到电网中,在实现低成本可持续电力供应的同时,也带来了相关间歇性的技术挑战。 本文提出了一种基于混合决策规则(MDR)的完全自适应基于 Wasserstein 的分布式鲁棒多阶段框架,用于解决机组不确定性问题(UUC),以更好地适应风电在机组状态决策和非预期性方面的影响。 调度过程。 与现有的多阶段模型相比,该框架引入了改进的MDR来处理所有决策变量以扩展可行域,因此该框架可以通过调整决策变量的相关周期数来获得各种典型模型。 因此,我们的模型可以为一些传统模型中不可行的问题找到可行的解决方案,同时为可行的问题找到更好的解决方案。 所提出的模型采用高级优化方法和改进的 MDR 重新制定,形成混合
2025-09-01 16:00:33 41KB
1
威布尔参数计算工具:支持实验设计与评估,最大似然估计,实验时间预测及实际可靠度评估基于excel模板与matlab代码,基于威布尔分布的可靠性实验参数计算与评估:最大似然估计、试验时间设计与评估,weibull威布尔计算,可靠性实验,最大似然估计参数,支持输入可靠度,置信度,样本数量等参数,计算需要的试验时间。 支持理论公式推导。 1、如果只要excel模板,支持可靠性试验设计,可设置时间,样品数量等预估待测时间,样品数量等 2、支持实验后,评估实际可靠度,matlab代码 ,Weibull计算; 可靠性实验; 最大似然估计参数; 输入参数(可靠度、置信度、样本数量); 试验时间计算; 理论公式推导; Excel模板; 实验后评估实际可靠度; Matlab代码。,威布尔计算与可靠性实验:参数估计与实际评估的Excel与Matlab解决方案
2025-09-01 09:58:08 1.14MB
1
基于DQN算法强化学习的主动悬架系统控制:质心加速度与悬架动态性能的智能优化及Matlab代码实现与对比分析,智能体Agent输入DQN算法强化学习控制主动悬架,出DQN算法强化学习控制的主动悬架 质心加速度 悬架动绕度 轮胎位移作为智能体agent的输入 搭建了悬架的空间状态方程 可以运行 效果很好 可以与pid控制进行对比 可带强化学习dqn的Matlab代码 有详细的介绍 可供学习 ,DQN算法; 强化学习控制; 主动悬架; 质心加速度; 悬架动绕度; 轮胎位移; 智能体agent输入; 空间状态方程; 运行效果对比; PID控制对比; Matlab代码; 详细介绍。,强化学习DQN算法控制主动悬架:系统效果详解与代码实例
2025-08-29 08:51:34 4.87MB 哈希算法
1
时间窗车辆路径问题(Vehicle Routing Problem with Time Windows,简称VRPTW)是物流配送、运输规划领域中一个重要的研究课题。该问题的目标是在满足客户时间窗约束的同时,合理安排车辆的行驶路线,以达到降低运营成本、提高配送效率的目的。时间窗约束是指配送车辆必须在客户规定的时间段内到达,这增加了路径规划的复杂性。 分布式并行处理方法(Alternating Direction Method of Multipliers,简称ADMM)是一种用于求解分布式优化问题的有效算法。该算法的特点在于将全局的优化问题分解为多个子问题,并且通过一系列的迭代计算,使得这些子问题的解能够相互协调,最终达到全局优化的目的。 将ADMM算法应用于VRPTW问题的求解中,可以有效处理大规模的优化问题。在算法的迭代过程中,每个子问题是独立进行求解的,这显著提高了计算效率,并且降低了对计算资源的需求。这种分布式计算的思想特别适合于现代云计算环境中,可以实现对大规模数据的快速处理。 Matlab是一种高性能的数值计算和可视化软件,广泛应用于工程计算、数据分析、算法开发等领域。在VRPTW问题的求解中,Matlab不仅提供丰富的数学计算功能,而且通过其工具箱支持ADMM算法的实现,大大简化了算法的编码工作。 本次发布的压缩包文件,提供了完整的基于ADMM算法的VRPTW问题求解方案,包含了详细的Matlab代码实现。这份材料不仅有助于理解ADMM算法在VRPTW问题中的应用,还为研究者和工程师提供了一套可以直接运行的工具,从而快速实现路径规划的优化。 此外,该压缩包文件还可能包含了仿真数据、测试用例以及算法参数设置等,这为研究人员验证算法的性能提供了便利。通过对实际案例的测试,研究者可以评估算法在不同规模和不同类型问题上的适用性及效率。 这份压缩包文件是研究和解决VRPTW问题的重要资源,不仅为学术界提供了理论研究的平台,也为实际应用提供了可行的解决方案。通过这份材料,相关人员可以更深入地了解ADMM算法在实际问题中的应用,从而为物流运输领域提供更为智能化的路径规划服务。
2025-08-29 08:30:33 37KB
1
基于CNN-LSSVM数据分类预测算法的Matlab代码实现(2019A版及以上适用),基于卷积神经网络结合最小二乘支持向量机(CNN-LSSVM)的数据分类预测 CNN-LSSVM分类 matlab代码 注:要求 Matlab 2019A 及以上版本 ,基于卷积神经网络; 最小二乘支持向量机; 数据分类预测; MATLAB 2019A 代码,CNN-LSSVM分类算法的数据预测 MATLAB 2019A+代码示例 在当前的科技发展背景下,数据分类预测技术在模式识别、图像处理、生物信息学等多个领域得到了广泛的应用。其中,卷积神经网络(CNN)作为一种深度学习算法,因其在图像和视频识别、自然语言处理等方面表现出色,已经成为数据分析领域的重要工具。而最小二乘支持向量机(LSSVM)则是一种有效的监督式学习方法,主要用于分类和回归分析。CNN与LSSVM的结合——CNN-LSSVM数据分类预测算法,既融合了CNN在特征提取上的优势,又利用了LSSVM在分类上的高效性和准确性。 本套Matlab代码实现的CNN-LSSVM数据分类预测算法,是专为Matlab 2019A及以上版本设计的。该算法通过两个主要模块实现高效的数据分类预测:卷积神经网络负责从输入数据中自动学习到高级特征表示;最小二乘支持向量机根据CNN提取的特征进行分类决策。该算法的核心思想是将CNN强大的特征提取能力与LSSVM出色的分类能力相结合,以达到在各种复杂数据分类任务中的优化效果。 为了更好地理解和应用CNN-LSSVM算法,本代码提供了一系列的文件,包括相关的文档和图像文件。这些文件详细阐述了CNN-LSSVM算法的理论基础、实现步骤以及相关的代码示例。在文档中,用户可以找到算法的数学描述、系统架构、以及关键参数的调整和优化策略。图像文件则可能包含了算法运行过程中的某些可视化结果,帮助用户直观地理解数据在模型中的处理流程。 通过这些文件的学习,用户不仅能够掌握如何利用Matlab实现CNN-LSSVM算法,还能够了解该算法在实际问题中的应用,例如在医疗图像分析、交通标志识别、语音识别等领域的成功案例。此外,该代码还可能包含了如何在Matlab中加载和处理数据集、如何构建和训练CNN-LSSVM模型、如何评估模型性能等实践知识。这些实践环节对于学习者而言至关重要,它们不仅加深了对算法理论的理解,还提高了学习者解决实际问题的能力。 在技术不断进步的今天,掌握先进的数据分类预测技术对于科研工作者和工程师来说是一项不可或缺的技能。CNN-LSSVM作为其中的佼佼者,已经成为该领域的研究热点。而本套Matlab代码的实现,为相关的学习者和研究者提供了一条深入研究和应用该技术的捷径,为他们在数据科学的道路上披荆斩棘、勇往直前。
2025-08-28 17:41:03 403KB
1
用串matlab代码该存储库包含用于攻丝飞行员的 Matlab 代码,包括: 轻拍训练器 主要实验 要求: 确保安装了以下软件并添加到 matlab/octave 路径中。 有关说明,请参阅以下链接: 要求 二手版本 >=3.0.14 >=2016b 或者 5.1 跑步: 重新启动您的计算机,并关闭所有可能消耗资源的应用程序(仅保留 Matlab) * 。 将整个存储库下载为 zip。 解压缩并导航到下载的文件夹。 把鼠标放在一边,确保键盘周围有空间。 确保您处于安静的环境中,并且您戴着耳机。 在 Matlab 中运行 tapTrainer.m 以启动 Tap Trainer psychtoolbox 会话。 在 Matlab 中运行 tapMainExperiment.m 以启动 Main Experiment psychtoolbox 会话。 * 如果您在实验过程中听到音频破裂,您可能正在运行加载处理器的应用程序。 尝试查找并关闭此应用程序。 如果它不起作用,请与我们联系。 Tap Trainer 课程 参与者完成了许多试验。 在每次试验中,都会呈现有节奏的刺激。 刺激可以是无缝循
2025-08-24 17:27:16 190KB 系统开源
1