https://blog.csdn.net/JayKuen/article/details/134989188?spm=1001.2014.3001.5501 1.下载解压gcc tar -xvf gcc-9.3.0.tar.gz cd gcc-9.3.0 2.下载gcc依赖 tar -xvf gmp-6.1.0.tar.xz mv gmp-6.1.0 gmp tar -xvf mpfr-3.1.4.tar.gz mv mpfr-3.1.4 mpfr tar -xvf mpc-1.0.3.tar.gz mv mpc-1.0.3 mpc
2025-04-26 23:48:29 122.51MB GCC升级
1
gcc 升级是需要的mpc安装包 tar -zxvf linux-tool-mpc-1.0.3.tar.gz /* tgeneric.c -- File for generic tests. Copyright (C) 2008, 2009, 2010, 2011, 2012 INRIA This file is part of GNU MPC. GNU MPC is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version.
2025-04-26 22:30:58 660KB linux
1
内容概要:本文深入探讨了利用模型预测控制(MPC)对三相T型三电平逆变器进行并网控制的仿真研究。文章首先介绍了系统的拓扑结构及其面临的挑战,如中性点电压波动和共模电压问题。接着详细解释了MPC的核心思想,即通过构建代价函数来综合处理多个控制目标,包括电网电流跟踪、中性点电压平衡和漏电流抑制。文中提供了具体的代价函数和SVPWM实现方法,并通过仿真波形展示了不同阶段的控制效果。此外,作者分享了一些调试经验和常见错误避免技巧,强调了参数调整的重要性以及各控制目标之间的权衡关系。 适合人群:从事电力电子控制系统设计的研究人员和技术人员,尤其是对MPC感兴趣或希望深入了解三电平逆变器控制机制的专业人士。 使用场景及目标:适用于需要提高逆变器并网性能的应用场合,旨在帮助读者掌握MPC的基本原理及其在实际工程项目中的应用方法,从而实现更高效的多目标控制。 其他说明:文章不仅提供了理论分析,还包括了大量的代码片段和实践经验,有助于读者更好地理解和实施相关技术。同时,针对特定版本软件(如MATLAB 2018b)可能出现的问题给出了改进建议。
2025-04-14 16:37:17 1.05MB
1
,,2023TRANS(顶刊) 基于人工势场和 MPC COLREG 的无人船复杂遭遇路径规划 MATLAB 源码+对应文献 船舶会遇避碰 船舶运动规划是海上自主水面舰艇(MASS)自主导航的核心问题。 本文提出了一种新颖的模型预测人工势场(MPAPF)运动规划方法,用于考虑防撞规则的复杂遭遇场景。 建立了新的船舶域,设计了闭区间势场函数来表示船舶域的不可侵犯性质。 采用在运动规划过程中具有预定义速度的Nomoto模型来生成符合船舶运动学的可跟随路径。 为了解决传统人工势场(APF)方法的局部最优问题,保证复杂遭遇场景下的避碰安全,提出一种基于模型预测策略和人工势场的运动规划方法,即MPAPF。 该方法将船舶运动规划问题转化为具有操纵性、航行规则、通航航道等多重约束的非线性优化问题。 4个案例的仿真结果表明,所提出的MPAPF算法可以解决上述问题 与 APF、A-star 和快速探索随机树 (RRT) 的变体相比,生成可行的运动路径,以避免在复杂的遭遇场景中发生船舶碰撞。 ,则性要求;基于TRANS(顶刊);MPC;人工势场;COLREG;避碰规则;复杂遭遇场景路径规划;
2025-04-10 21:25:07 2.08MB
1
轨迹跟踪CarSimMATLAB联合仿真模型预测控制横纵向协同控制 【打包文件包括】 -CarSim车型文件.cpar -MPC车速跟踪算法MPC_LongControl_Dyn_Alg.m -MPC横向路径跟踪算法MPC_LateralControl_Dyn_Alg_DLC3888.m -Simulink系统文件MPC_LateralControl_Dyn.slx -自己录制的CarSimMATLAB联合仿真一步步操作流程 在现代汽车系统中,轨迹跟踪作为一项关键技术,它的目的是使汽车能够按照预定的路径精确行驶。为了达到这一目的,研究人员和工程师们开发了多种技术手段,其中模型预测控制(MPC)与横纵向协同控制策略,已经成为了实现精确轨迹跟踪的重要方法之一。 模型预测控制(MPC)是一种先进的控制策略,它能够处理系统的多变量和时间延迟特性,并且能够考虑未来一段时间内的系统行为和约束条件,通过优化计算出当前时刻的最优控制策略。在汽车轨迹跟踪的应用中,MPC通过构建车辆运动模型,可以预测未来一段时间内车辆的行驶状态,并实时调整车辆的横纵向控制输入,以最小化与预设轨迹之间的偏差。 当MPC与其他控制策略结合,特别是横纵向协同控制时,可以实现对车辆横纵向运动的综合控制。横纵向协同控制是指同时对车辆的横向和纵向运动进行控制,以实现更为复杂的行驶任务。例如,在需要变道超车或者在狭窄道路上行驶时,车辆不仅要控制自身的纵向速度,还要控制横向位置,确保行驶的安全性和舒适性。 在实现轨迹跟踪的联合仿真中,CarSim和MATLAB/Simulink是两种常用的工具。CarSim是一个专业的汽车动力学仿真软件,它能够提供精确的车辆模型和复杂场景设置。而MATLAB/Simulink则是一个强大的仿真平台,它支持复杂的算法开发和系统级仿真。通过将CarSim与MATLAB/Simulink联合使用,研究人员可以在更加真实的环境下测试和验证轨迹跟踪控制策略,同时利用MATLAB强大的计算和优化能力,为车辆控制策略的开发提供强有力的工具支持。 在本次提供的压缩包文件中,包含了多个关键组件,如CarSim车型文件(.cpar)、MPC车速跟踪算法(MPC_LongControl_Dyn_Alg.m)、MPC横向路径跟踪算法(MPC_LateralControl_Dyn_Alg_DLC3888.m)、Simulink系统文件(MPC_LateralControl_Dyn.slx)以及相关的操作流程文档。这些文件为研究者们提供了完整的仿真环境和算法实现,使得他们可以模拟出复杂的道路情况,验证和改进轨迹跟踪算法。 此外,压缩包中还包含了一些文本和图片文件,这些文件可能是对于联合仿真模型预测控制横纵向协同控制的详细解析或案例分析,以及相关操作流程的可视化表达。这些内容对于理解联合仿真环境中的控制策略,以及如何操作仿真工具,进行仿真实验具有重要的指导意义。 轨迹跟踪技术的发展对于提升汽车安全性和舒适性具有重要意义。通过模型预测控制和横纵向协同控制策略,可以实现更为复杂和精确的车辆轨迹跟踪。而CarSim与MATLAB/Simulink的联合仿真为这一技术的发展提供了强有力的支撑,使得研究人员能够在更加接近实际环境的条件下测试和验证相关控制算法。而通过本次提供的压缩包文件,我们可以进一步探索和学习如何应用这些先进的技术和工具来提升轨迹跟踪的能力。
2025-04-10 20:53:32 828KB
1
人工势场法换道避撞与MPC模型预测控制联合仿真研究:轨迹规划与跟踪误差分析,人工势场法道主动避撞加mpc模型预测控制,carsim和simulink联合仿真,有规划和控制轨迹对比图。 跟踪误差良好,可以作为学习人工势场方法在自动驾驶汽车轨迹规划上的应用资料。 ,核心关键词:人工势场法; 换道; 主动避撞; MPC模型预测控制; Carsim和Simulink联合仿真; 规划; 控制轨迹对比图; 跟踪误差。,"人工势场法与MPC模型预测控制联合仿真:自动驾驶汽车换道避撞策略研究" 在自动驾驶汽车技术的开发中,轨迹规划与控制是确保车辆安全、平稳运行的核心技术之一。人工势场法作为一种启发式方法,在轨迹规划上有着广泛的应用。通过模拟物理世界中的力场效应,人工势场法能够在复杂的驾驶环境中为自动驾驶车辆提供一条避开障碍物、实现平滑换道和避撞的路径。这种方法通过对势场的计算,指导车辆避开高势能区域,从而找到一条低势能的最优路径。 MPC(Model Predictive Control,模型预测控制)是一种先进的控制策略,它通过建立车辆的动态模型并预测未来一段时间内的车辆状态,从而实现对未来控制动作的优化。在自动驾驶领域,MPC能够结合车辆当前状态、未来期望状态以及约束条件(如速度、加速度限制等),实时地计算出最优的控制输入序列,以达到预定的行驶目标。 当人工势场法与MPC模型预测控制相结合时,不仅可以实现复杂的轨迹规划,还可以通过MPC的预测能力提升轨迹的跟踪性能。这种联合仿真研究,利用Carsim软件进行车辆动力学模型的建模和仿真,再通过Simulink进行控制策略的实现和验证,能够有效地分析轨迹规划与控制的性能,尤其是跟踪误差。 在本次研究中,通过Carsim和Simulink的联合仿真,可以清晰地展示出规划轨迹与控制轨迹之间的对比。这种对比有助于直观地评估控制策略的优劣,并为自动驾驶汽车的进一步开发提供指导。研究中提到的跟踪误差良好,说明了联合使用人工势场法和MPC模型预测控制能够有效地降低误差,提高轨迹跟踪的精确度。 本研究不仅在技术上取得了进展,同时也为学习和理解人工势场方法在自动驾驶汽车轨迹规划上的应用提供了宝贵的资料。通过对人工势场法的理解和掌握,工程师和研究人员可以更好地设计出符合实际需求的自动驾驶系统。而MPC模型预测控制的引入,则进一步提升了系统的智能化水平,使得自动驾驶汽车能够在更复杂的交通环境中安全、高效地行驶。 人工势场法与MPC模型预测控制的联合应用,为自动驾驶汽车的轨迹规划与控制提供了一种新的思路和技术路线。这种结合不仅优化了路径选择,还提高了控制精度,为自动驾驶汽车的商业化落地奠定了坚实的技术基础。
2025-04-09 20:03:48 101KB paas
1
基于MPC的电动汽车分布式协同自适应巡航控制:上下分层控制与仿真结果展示,基于MPC的电动汽车协同自适应巡航控制:上下分层控制与仿真结果展示,基于MPC的分布式电动汽车协同自适应巡航控制,采用上下分层控制方式,上层控制器采用模型预测控制mpc方式,产生期望的加速度,下层根据期望的加速度分配扭矩;仿真结果良好,能够实现前车在加减速情况下,规划期望的跟车距离,产生期望的加速度进行自适应巡航控制。 ,关键词:MPC(模型预测控制); 分布式电动汽车; 协同自适应巡航控制; 上下分层控制方式; 期望加速度; 扭矩分配; 仿真结果良好; 前车加减速; 跟车距离。,基于MPC的分层控制电动汽车自适应巡航系统,仿真实现前车加减速跟车距离自适应
2025-04-09 14:20:50 1.34MB scss
1
MPC模型预测控制:从原理到代码实现,涵盖双积分、倒立摆、车辆运动学与动力学跟踪控制系统的详细文档与编程实践,MPC模型预测控制原理到代码实现:双积分、倒立摆、车辆运动学与动力学跟踪控制案例详解,mpc模型预测控制从原理到代码实现 mpc模型预测控制详细原理推导 matlab和c++两种编程实现 四个实际控制工程案例: 双积分控制系统 倒立摆控制系统 车辆运动学跟踪控制系统 车辆动力学跟踪控制系统 包含上述所有的文档和代码。 ,MPC模型预测控制; 原理推导; MATLAB实现; C++实现; 案例: 双积分控制系统; 倒立摆控制系统; 运动学跟踪; 动力学跟踪控制系统; 文档与代码。,MPC模型预测控制:原理详解与代码实现全解析
2025-04-07 15:19:48 9.18MB
1
【基于MPC单步垂直泊车的自动泊车系统:Carsim与Matlab联合仿真及持续优化版本】,MPC单步垂直泊车技术:Carsim与Matlab联合仿真下的自动泊车模型预测控制优化与实践,【5.MPC单步垂直泊车】APA 单步垂直泊车 模型预测MPC 自动泊车Carsim与Matlab联合仿真 后期会继续迭代更新的版本 包含垂直路径数据点(只有路径点)和MPC控制算法 后可以有参考模型,全部开源,入群后,可在群里提问,会。 后期不断优化。 1.Carsim2019 2020场景及车辆配置文件 2.Simulink文件包含stateflow纵向逻辑控制 3.MPC横向控制算法文件 4.垂直路径点处理.m 5.群里 6.跟踪误差等数据分析画图脚本 ,核心关键词: MPC单步垂直泊车; APA; 模型预测MPC; 自动泊车; Carsim与Matlab联合仿真; 垂直路径数据点; MPC控制算法; 后期优化; Carsim2019/2020场景; 车辆配置文件; Simulink文件; stateflow纵向逻辑控制; MPC横向控制算法文件; 垂直路径点处理; 群里; 跟踪误差数据分析画
2025-04-07 14:28:02 436KB 数据仓库
1