《2021 电赛 F 题视觉教程+代码免费开源》 本文主要针对2021年电子竞赛(F题)中的视觉技术进行详细讲解,并提供了相关的代码资源。该教程聚焦于K210芯片和OpenMV的数字识别与红线循迹功能,旨在帮助参赛者理解和应用这些技术。 1. K210 数字识别、滤噪、判断 在K210芯片上实现数字识别是一个关键环节。为了克服数字不能完全进入视野、帧误识等问题,需要进行滤噪处理。这通常涉及到对识别结果的算法优化,例如使用YOLOV5神经网络模型进行训练。YOLOV5是一种实时目标检测系统,能高效地处理图像中的目标。训练集由3403张赛道数字照片组成,利用labelimg工具进行标注,生成的数据集用于训练得到.pt模型。之后,需要将.pt模型转换为K210板支持的.kmodel模型。 K210的操作步骤包括: 1. 下载Maixpy IDE (https://www.sipeed.com/index.html) 2. 更新固件库,参照官方教程(https://wiki.sipeed.com/soft/maixpy/zh/get_started/upgrade_maixpy_firmware.html) 3. 把文件拷贝至TF卡,格式化为FAT32 4. 在IDE中查看效果 5. 使用串口调试助手(波特率115200)测试指令通信 1. OPENMV 红线循迹 OpenMV用于实现小车的红线循迹功能。在处理过程中,要考虑到小车行驶中可能出现的各种场景,如数字识别、滤波处理等。上位机负责识别和滤波,然后将指令发送给下位机执行。例如,识别到数字12后,后续不再发送指令;识别到34,则在路口发送“l”或“r”;而5678号病房则需在两个路口分别发送转向指令。 代码部分提供了详细注释,帮助理解每一步操作。在Maixpy IDE中,由于Python的numpy和pandas库无法直接调用,需要找到替代方法或者对现有代码进行调整。 通过本教程,参赛者不仅能学习到K210和OpenMV在数字识别和红线循迹中的应用,还能掌握神经网络模型训练、数据集制作、模型转换以及嵌入式系统的调试技巧,为电子竞赛做好充分准备。这个免费开源的资源为参赛团队提供了宝贵的实践经验和参考代码,有助于提升项目的完成度和竞争力。
2025-07-19 23:43:55 17KB 课程资源
1
华数杯 【项目资源】:包含前端、后端、移动开发、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源,毕业设计等各种技术项目的源码。包括C++、Java、python、web、C#、EDA等项目的源码。 【适用人群】:适用于希望学习不同技术领域的初学者或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】:项目具有较高的学习借鉴价值,也可直接拿来修改复刻。对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】:有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。鼓励下载和使用,并欢迎大家互相学习,共同进步。
2025-07-19 00:06:15 216KB
1
内容概要:本文基于2024年各招聘企业的笔试考察数据,提供了详细的计算机求职笔试攻略。文章涵盖了春招时间分布、笔试题型、常见组卷方案、各类题型的具体考察内容及其学习方法。特别强调了选择题、SQL编程题、算法编程题的学习路径和注意事项。此外,还介绍了银行科技岗的特点及其笔试面试内容,包括行测、计算机专项、英语、企业文化、心理测试等方面。文中指出,银行科技岗因其稳定性、较低的工作压力和发展前景成为计算机专业学生的热门选择。同时,文章提供了不同职业类型的备考建议,如私企、央企国企、运营商、研究所等,并强调了简历优化、实习经验和心态调整的重要性。 适合人群:即将参与计算机行业求职笔试的学生或职场新人,尤其是对银行科技岗感兴趣的计算机专业学生。 使用场景及目标:①帮助求职者了解计算机求职笔试的整体流程和题型分布;②提供具体的备考方法和资源链接,如牛客网题库;③指导求职者如何针对性地准备不同企业和职位的笔试和面试。 其他说明:文章不仅提供了理论性的备考指南,还结合实际案例和真题解析,使读者能够在实践中更好地理解和应用所学知识。此外,文中还提到了不同职业类型之间的差异,帮助求职者做出更适合自己的职业选择。
2025-07-17 20:17:36 1.44MB SQL 算法编程 数据结构 计算机网络
1
MSPM0G3507 + MPU6050串口输出 24电赛H题-稳定姿态
2025-07-17 12:12:38 14.76MB MPU6050
1
MSPM0G3507_2024电赛自动行驶小车(H题)_问题与感悟
2025-07-17 12:11:29 682KB
1
I-MSPM0L1306-Project 电赛期间准备的工程(根据不同开发平台分类) 包含: • CCS o car-control (简单的小车控制) o uart-control-stepmotorPlatform (23年电赛激光云台-串口控制的低成本高精度二维云台) • KEIL + vscode(可选) o basic-car (功能完善的小车测控) o ti-24-car (2024年电赛H题,最快用时30s) 个人觉得vscode编程更舒适,只需要下个扩展就能接上keil了
2025-07-17 12:10:25 1.25MB
1
十四届蓝桥杯国赛考试计算思维 U10 组真题和答案
2025-07-16 16:40:22 1.04MB 蓝桥杯
1
ISTQB(高级-测试经理3.0版_2025年9月启用)考试大纲_模拟题&答案
2025-07-15 21:34:59 1.59MB ISTQB CSTQB 软件测试
1
大模型备案中的评估测试题集主要是根据TC260的要求定制的,不同类型不同功能的大模型测试题均不一样,本文档主要是针对文本生成类通用大模型。 测试题集内容包括:违反社会主义核心价值观的内容、包含歧视性内容、商业违法违规内容、侵犯他人合法权益内容、无法满足特定服务类型的安全需求等五大类别,五大类别下有31小类需划分明确。并对模型生成内容做合格率判定。 从应拒答测试题库中抽取300道题目,要求模型拒答率要求不低于95% 从非拒答题库抽取300题,要求模型拒答率不高于5% 人工抽检生成内容测试题库1000道,要求模型合格率不低于90%
2025-07-15 15:26:06 15KB
1
该部分主要要完成正方形区域的识别,并返回对应的坐标,但是由于距离1m,过远。因此需要引入图像增强,里面代码完成基本流程测试,仅供参考 该部分主要要完成正方形区域的识别,并返回对应的坐标,但是由于距离1m,过远。因此需要引入图像增强,里面代码完成基本流程测试,仅供参考 该部分主要要完成正方形区域的识别,并返回对应的坐标,但是由于距离1m,过远。因此需要引入图像增强,里面代码完成基本流程测试,仅供参考 ### 2023电赛E题视觉部分:正方形区域识别与坐标返回技术解析 #### 一、项目背景及目标概述 在2023年的电子设计竞赛(以下简称“电赛”)E题中,视觉部分的任务是识别并定位远处(约1米)的一个或多个正方形区域,并返回这些正方形的中心坐标。这项任务对于机器视觉系统来说是一项挑战,因为远距离会降低图像质量,使得形状检测变得更加困难。为此,项目中采用了图像增强技术来提高识别精度。 #### 二、关键技术解析 ##### 1. 图像增强技术 图像增强是在处理图像之前对图像进行预处理的一种方法,旨在改善图像质量,使其更适合后续的图像分析和处理。在这个项目中,为了应对1米远距离带来的图像质量下降问题,采取了以下步骤: - **初始化摄像头**:通过`sensor.reset()`和`sensor.set_pixformat(sensor.RGB565)`等函数初始化摄像头参数。 - **设置阈值**:定义了一个阈值列表`thresholds=[(30,100,-64,-8,-32,32)]`,用于图像增强。这些阈值可以根据实际情况进行调整,以获得最佳效果。 - **二值化处理**:通过`img.binary([thresholds])`将图像转换为二值图像,突出正方形区域。 - **寻找轮廓**:利用`img.find_blobs([thresholds], pixels_threshold=200, area_threshold=200)`函数来检测图像中的轮廓。 ##### 2. 正方形检测与坐标计算 在图像增强之后,下一步是检测正方形并计算其坐标。主要步骤包括: - **轮廓检测**:通过`img.find_blobs`函数获取图像中的所有轮廓。 - **正方形检测**:遍历每个轮廓,使用`blob.is_square()`方法检查轮廓是否为正方形。 - **坐标计算**:对于每个检测到的正方形,使用`blob.cx()`和`blob.cy()`方法计算其中心坐标。 - **距离估算**:基于正方形的宽度估算距离,这里假设正方形的宽度为1米,通过公式`distance = 1 / blob.w()`来计算距离。 #### 三、代码实现详解 以下是项目中的关键代码片段,用于实现上述功能: ```python # 初始化摄像头 sensor.reset() sensor.set_pixformat(sensor.RGB565) sensor.set_framesize(sensor.QVGA) sensor.skip_frames(time=2000) # 设置阈值,用于图像增强 thresholds = [(30, 100, -64, -8, -32, 32)] while True: img = sensor.snapshot() # 获取图像 # 图像增强 img.binary([thresholds]) # 寻找轮廓 blobs = img.find_blobs([thresholds], pixels_threshold=200, area_threshold=200) # 遍历找到的轮廓 for blob in blobs: # 判断是否为正方形 if blob.is_square(): # 计算正方形的中心坐标 x = blob.cx() y = blob.cy() # 计算距离 distance = 1 / blob.w() # 假设正方形的宽度为1米 # 在图像上绘制正方形和坐标 img.draw_rectangle(blob.rect()) img.draw_cross(x, y) # 打印坐标和距离 print("Square found at (x={}, y={}), distance={}m".format(x, y, distance)) # 显示图像 img.show() ``` #### 四、总结 本文详细介绍了2023年电赛E题视觉部分的实现原理和技术细节,重点在于如何通过图像增强技术和正方形检测算法,在远距离条件下准确地识别出正方形区域并计算其坐标。这一解决方案不仅适用于电赛项目,也为其他类似的机器视觉应用提供了有价值的参考。
2025-07-14 14:00:38 2KB
1