在电子硬件设计中,PCB(印制电路板)的电磁干扰(EMI)控制是一项至关重要的任务。本文主要探讨了PCB中的EMI设计规范步骤,以确保设备的稳定性和符合EMI标准。 关于IC(集成电路)的电源处理,设计规范要求每个IC的电源引脚都要配备0.1μF的去耦电容,对于BGA封装的芯片,其四角应分别放置0.1μF和0.01μF的电容。电源线上的滤波电容也是必不可少的,例如VTT等,这不仅有助于系统的稳定性,还能有效减少EMI。电容的配置要确保电源路径的完整性,以降低噪声。 时钟线的处理是EMI设计的关键。建议优先布设时钟线,并遵循特定的规则:频率高于66MHz的时钟线过孔数不应超过2个,平均值不超过1.5个;频率低于66MHz的时钟线,过孔数不超过3个,平均值不超过2.5个。长于12英寸的时钟线,如果频率超过20MHz,过孔数量不得超过2个。在时钟线穿过过孔的地方,应在第二层(地层)和第三层(电源层)之间添加旁路电容,确保高频电流的回路连续性。电容应靠近过孔且与过孔的最大间距不超过300密尔。此外,时钟线不应穿岛,以防止干扰的产生,如果无法避免,可以使用去耦电容形成镜像通路。 对于I/O口的处理,所有的I/O口,如PS/2、USB、LPT、COM、SPEAK OUT、GAME等,应连接到同一块地,左侧和右侧与数字地相连,以增强抗干扰能力。COM2口如果是插针式,应尽可能靠近I/O地。EMI器件应靠近I/O屏蔽罩以减少辐射。I/O口附近的电源层和地层应独立,避免信号穿岛,以减少潜在的噪声路径。 文章强调了EMI设计规范的重要性,设计工程师需要严格遵守,而EMI工程师则有责任检查和解决不符合规范导致的问题。双方需要紧密协作,共同提高设计的EMI性能,降低成本,并不断更新和完善设计规范。 PCB的EMI设计规范步骤旨在通过合理的电源处理、时钟线布局和I/O接口管理,降低电磁干扰,确保系统运行的稳定性和合规性。设计师必须充分理解并严格遵循这些规则,以创建高效且低EMI的电子产品。
2025-11-25 09:19:29 62KB 设计规范 硬件设计
1
PCB电路板的EMI(电磁干扰)设计规范步骤是在PCB设计过程中极其重要的一环,它直接关系到电子设备的电磁兼容性能。EMI设计规范的目的是为了确保电路板在运行中不产生过度的电磁干扰,同时也确保电路板能够抵御外界电磁干扰的影响。对于电源开发者而言,提前进行EMI设计可以大幅度节省后期整改EMI问题所花费的时间和成本。 EMI设计规范要求设计工程师在电路板的各个IC的电源PIN处配置适当的去耦电容,通常是每个PIN配置一个0.1μF的电容。对于BGA封装的芯片,需要在其四角分别配置0.1μF和0.01μF的电容,共八个。这样做可以为IC提供稳定的电源,同时降低电源平面和地平面之间的干扰。 在走线方面,尤其是涉及电源的走线,必须加上适当的滤波电容,比如VTT(终端电压调节器)的走线。这样的设计不仅可以提升电路的稳定性,还能减少EMI。 时钟线的设计是EMI设计规范中的重点之一。建议先布设时钟线,这是因为它通常频率较高,对EMI的影响较大。对于频率大于或等于66MHz的时钟线,建议每条线通过的过孔数不超过两个,平均数不超过1.5个。对于频率小于66MHz的时钟线,每条线通过的过孔数不超过三个,平均数不超过2.5个。如果时钟线长度超过12英寸,且频率大于20MHz,过孔数同样不应超过两个。对于有过孔的时钟线,在其相邻的第二层(地层)和第三层(电源层)之间应添加旁路电容,以保证时钟线换层后参考层的高频电流回路连续。旁路电容的位置应靠近过孔,并与过孔的间距不超过300MIL(1MIL约等于0.0254mm)。所有时钟线原则上不应穿岛,即不应穿过电源岛或地岛。若条件限制必须穿岛,时钟频率大于等于66MHz的线路不允许穿岛,而频率小于66MHz的线路则应在穿岛处添加去耦电容。 对于I/O口的处理,同样需要特别注意,I/O口需要和I/O地尽可能靠近。在I/O口的电路中增加EMI器件时,应尽量靠近I/O Shield。各I/O口的分组应该按照规范执行,比如PS/2、USB、LPT、COM、SPEAKER OUT、GAME等接口共用一块地,其最左端和最右端与数字地相连,宽度不小于200MIL或者三个过孔,其他部分则不应与数字地相连。I/O口的电源层与地层需要单独划岛,并确保顶层和底层都铺地,信号线不允许穿岛。 针对EMI设计规范,设计工程师必须严格遵守。EMI工程师负责检查规范执行情况,并对违规导致EMI测试失败的情况负责。EMI工程师还需不断优化规范,并对每一个外设口进行EMI测试以确保没有遗漏。此外,设计工程师有权提出对规范的修改建议,而EMI工程师有责任通过实验验证这些建议并将其纳入规范。 EMI工程师应当致力于降低EMI设计成本,并尽量减少磁珠等元件的使用数量。这一目标的达成是通过不断实验和优化设计来实现的。良好的EMI设计可以减少电路板对其他设备的干扰,同时提升设备的稳定性和可靠性,是电子工程师必须掌握的重要技能之一。
2025-11-24 23:31:54 63KB PCB设计
1
### PCB EMI设计规范步骤详解 #### 一、引言 在现代电子设备的设计中,电磁干扰(EMI)已成为一个不可忽视的问题。为了保证产品的性能稳定性和合规性,合理有效的PCB EMI设计规范至关重要。本文将详细介绍PCB EMI设计规范中的关键步骤及相关注意事项,旨在帮助硬件设计师优化PCB设计,降低EMI风险。 #### 二、IC的电源处理 1. **去耦电容配置**: - 对于每个集成电路(IC),确保其电源引脚(PIN)配备有一个0.1μF的去耦电容器。 - 对于BGA封装的芯片,应在BGA的四个角落分别安装0.1μF和0.01μF的电容器各两个,总计八个电容器。 - 特别注意为电源走线添加滤波电容,例如为VTT等电源线增加滤波措施。这些措施不仅有助于提高系统的稳定性,还能有效改善EMI表现。 2. **电源走线的滤波**: - 在设计中加入适当的滤波电容,可以有效地减少电源线上的噪声,从而降低EMI的影响。 #### 三、时钟线的处理 1. **时钟线布线原则**: - 首先考虑布设时钟线,特别是对于高频时钟信号。 - 对于频率≥66MHz的时钟线,每条线的过孔数量不应超过2个,平均过孔数量不得超过1.5个。 - 对于频率<66MHz的时钟线,每条线的过孔数量不应超过3个,平均过孔数量不得超过2.5个。 - 如果时钟线长度超过12英寸且频率>20MHz,则过孔数量不得超过2个。 - 若时钟线包含过孔,应在过孔附近的第二层(地层)和第三层(电源层)之间添加旁路电容,确保高频电流的回流路径连续。 2. **避免穿岛**: - 尽可能避免让时钟线穿过岛状结构(如电源岛、地岛等)。如果无法避免,对于频率≥66MHz的时钟线必须避免穿岛;而对于频率<66MHz的时钟线,如果穿岛则需要在附近添加去耦电容以形成镜像通路。 3. **时钟线布局注意事项**: - 保持时钟线与I/O接口之间的距离大于500mil,并避免与时钟线平行走线。 - 当时钟线位于第四层时,应尽量使其参考层为为其供电的电源层面。 - 打线时线间距需大于25mil。 - 连接BGA等器件时,避免在BGA下方布设过孔。 4. **特殊时钟信号的处理**: - 注意所有时钟信号,特别是名称看似非时钟信号但实际运行时钟功能的信号,例如AUDIO CODEC的AC_BITCLK以及FS3-FS0等。 #### 四、I/O口的处理 1. **I/O口的分组与接地**: - 各种I/O接口(如PS/2、USB、LPT、COM、SPEAKOUT、GAME等)应分成一块地,左右两端与数字地相连,宽度至少为200mil或三个过孔。 - COM2口如果是插针式接口,尽量靠近I/O地。 2. **EMI器件的位置**: - I/O电路中的EMI器件尽量靠近I/O屏蔽(SHIELD)。 3. **I/O口区域的设计**: - I/O口处的电源层和地层应单独划分成岛,并确保Bottom和Top层都铺设地线,不允许信号线穿越岛屿区域。 #### 五、几点说明 1. **设计工程师的责任**: - 设计工程师必须严格遵守PCB EMI设计规范。EMI工程师有权进行检查。若因违反设计规范导致EMI测试失败,责任由设计工程师承担。 2. **EMI工程师的责任**: - EMI工程师对设计规范的执行情况负责。对于遵循规范但仍EMI测试失败的情况,EMI工程师有义务提供解决方案,并将这些经验总结到设计规范中。 - EMI工程师还需要负责每个外部接口的EMI测试,确保不会遗漏任何接口。 3. **设计改进与反馈**: - 每个设计工程师有权提出对设计规范的修改建议或疑问,EMI工程师应负责解答疑问,并通过实验验证后将合理建议纳入设计规范中。 - EMI工程师还应努力降低成本,减少磁珠等EMI抑制元件的使用量。 通过上述详细的PCB EMI设计规范步骤介绍,我们可以看出,良好的EMI设计不仅仅是关注单个设计元素,而是需要综合考虑整个PCB设计中的多个方面,包括电源处理、时钟信号管理、I/O接口处理等多个维度。这些步骤和注意事项的实施将有助于提高产品的EMI性能,确保电子产品在复杂环境中能够稳定可靠地工作。
2025-11-24 21:49:07 62KB 时钟信号 硬件设计
1
开关电源是电子设备中常见的电力转换设备,其电磁干扰(EMI)的控制对于保障系统稳定运行至关重要。EMI干扰源主要来自于开关电源内部的功率开关管、整流二极管、高频变压器等元件,以及外部环境如电网波动、雷击和外界电磁辐射。在开关电源的设计过程中,减少这些干扰源产生的干扰,以及提高设备的电磁兼容性(EMC),是电磁干扰设计的核心任务。 在开关电源的EMI设计中,有以下几个方面需要特别关注: 1. 开关电源的EMI源 - 功率开关管是电场和磁场耦合的主要干扰源,因为其工作在高速开关状态,伴随着快速变化的电压和电流。 - 高频变压器主要由于漏感引起的快速电流变化,造成磁场耦合的干扰。 - 整流二极管的反向恢复特性会产生瞬间高 dv/dt 的电压尖峰,形成电磁干扰。 - PCB作为干扰源的耦合通道,其设计质量直接影响EMI抑制效果。 2. 开关电源EMI传输通道分类 - 传导干扰包括容性耦合、感性耦合和电阻耦合。 - 辐射干扰可以将电路元件假设为天线,通过电偶极子和磁偶极子理论来分析其电磁波的辐射。 3. 开关电源EMI抑制的9大措施 - 减小 dv/dt 和 di/dt 的峰值和斜率来降低干扰。 - 合理应用压敏电阻以降低浪涌电压。 - 使用阻尼网络抑制过冲。 - 采用软恢复特性的二极管减少高频EMI。 - 应用有源功率因数校正和谐波校正技术。 - 采用合理设计的电源线滤波器。 - 合理的接地处理和屏蔽措施。 - 进行合理的PCB设计。 4. 高频变压器漏感的控制 - 选择合适的磁芯材料和匝数来降低漏感。 - 减小绕组间的绝缘层厚度,使用黄金薄膜等材料以提高击穿电压。 - 提高绕组间的耦合度,减少漏感。 5. 高频变压器的屏蔽 - 采用铜箔屏蔽带来减少高频变压器的漏磁场。 - 将屏蔽带接地,形成对漏磁场的短路环以抑制泄漏。 - 为避免高频变压器噪声,需要采取加固措施,如使用环氧树脂粘接磁心、用玻璃珠胶合剂固定磁心等。 开关电源的EMI设计必须综合考虑各种干扰源和传播途径,通过合理设计元件、布局,以及利用滤波、屏蔽、接地等措施,最大程度地降低EMI的影响,从而提高电源系统的稳定性和可靠性。
1
### 开关电源EMI设计小结 #### 一、开关电源EMI源解析 开关电源在运行过程中会产生电磁干扰(EMI),这些干扰主要来源于内部元件的快速切换以及外部环境的影响。 1. **功率开关管**:功率开关管在工作过程中处于高速开关状态,其电压变化率(dv/dt)和电流变化率(di/dt)都非常高,这使得功率开关管成为产生EMI的主要源头之一。由于快速变化的电流和电压,功率开关管不仅能够产生电场耦合干扰,还能产生磁场耦合干扰。 2. **高频变压器**:高频变压器中的漏感会导致电流快速变化(di/dt),这种变化会产生较强的磁场耦合干扰。因此,高频变压器也是EMI的一个重要来源。 3. **整流二极管**:整流二极管在反向恢复过程中会产生高dv/dt,进而导致强烈的电磁干扰。这一过程通常发生在二极管从正向导通状态转变为反向截止状态时,反向恢复电流的断续会在引线电感和杂散电感中产生较高的电压变化率。 4. **PCB设计**:PCB板的设计质量直接影响到EMI的抑制效果。良好的PCB布局可以有效地减少EMI源之间的耦合,从而降低EMI的产生。 #### 二、EMI传输通道分类及特点 EMI可以通过传导和辐射两种方式传播,具体包括: 1. **传导干扰**: - 容性耦合:通过电容性连接,如寄生电容,将干扰信号从一个电路传到另一个电路。 - 感性耦合:通过互感效应将干扰信号从一个电路传递到另一个电路。 - 电阻耦合:主要包括: - 公共电源内阻产生的电阻传导耦合。 - 公共地线阻抗产生的电阻传导耦合。 - 公共线路阻抗产生的电阻传导耦合。 2. **辐射干扰**: - 在开关电源中,元器件和导线可以视为天线,产生电磁波。根据电偶极子和磁偶极子理论,二极管、电容、功率开关管可以被视为电偶极子;电感线圈则被视为磁偶极子。 - 当存在屏蔽体时,需要考虑屏蔽体的缝隙和孔洞对电磁波的泄露影响。 #### 三、EMI抑制的九大措施 针对开关电源EMI的产生机理,可以采取以下九项措施来有效抑制EMI: 1. **减小dv/dt和di/dt**:通过优化开关管的驱动电路或者使用软开关技术来降低电压和电流变化率,从而减少EMI的产生。 2. **压敏电阻的应用**:利用压敏电阻来吸收瞬态过电压,保护电路免受浪涌电压的损害。 3. **阻尼网络抑制过冲**:在电路中加入RC阻尼网络来抑制电压和电流的过冲现象。 4. **采用软恢复特性的二极管**:选用具有较慢反向恢复时间的二极管,减少反向恢复过程中产生的EMI。 5. **有源功率因数校正**:通过采用有源功率因数校正(APFC)技术来改善电源效率,减少谐波失真。 6. **电源线滤波器的设计**:合理设计电源线滤波器来过滤掉高频干扰。 7. **合理的接地处理**:良好的接地设计可以有效减少EMI的传播。 8. **有效的屏蔽措施**:通过使用屏蔽材料和技术来隔离干扰源。 9. **合理的PCB设计**:优化PCB布局,如正确布置电源和地线、合理布线等,以减少EMI。 #### 四、高频变压器漏感控制 1. **选择合适磁芯**:选择合适的磁芯材料,降低变压器的漏感。 2. **减小绕组间的绝缘层**:使用更薄的绝缘材料,如“黄金薄膜”,既能保证足够的绝缘性能,又能降低漏感。 3. **增加绕组间的耦合度**:通过优化绕组结构来提高耦合度,从而降低漏感。 #### 五、高频变压器的屏蔽 为了防止高频变压器的漏磁对周边电路造成干扰,可以采用屏蔽带来屏蔽高频变压器的漏磁场。屏蔽带通常由铜箔制成,并进行接地处理。此外,还可以通过使用环氧树脂或玻璃珠胶合剂来固定磁芯,减少高频变压器在工作过程中产生的噪音。 通过对以上知识点的学习,我们可以了解到开关电源EMI设计的关键要素及其解决方案,这对于提高开关电源的性能和可靠性具有重要意义。
2025-11-24 17:23:53 68KB 开关电源 基础知识 课设毕设
1
开关电源是现代电子设备中不可或缺的一部分,它负责将交流电压转换为直流电压,并保证电压的稳定性。然而,在开关电源工作过程中,由于高速开关动作以及整流、滤波等环节,会产生电磁干扰(EMI),这些干扰可能会对电子设备的正常工作造成影响。本文将详细分享关于开关电源EMI设计方面的经验,包括EMI干扰源、干扰传输通道、EMI抑制措施以及高频变压器的设计和屏蔽。 开关电源EMI的主要干扰源包括功率开关管、整流二极管和高频变压器。功率开关管在开关动作中产生很大的dv/dt和di/dt,即电压和电流的变化率,这些快速的变化是电磁干扰的主要来源。整流二极管的反向恢复特性也会产生EMI,特别是在高频工作情况下,反向恢复电流的断续会产生很高的电压变化率,从而产生强电磁干扰。高频变压器由于漏感问题,当功率开关管关断时会产生尖峰电压,这也是EMI的一个来源。而PCB设计对于抑制这些干扰源至关重要,因为PCB是干扰信号的耦合通道,其设计的优劣直接影响EMI的抑制效果。 开关电源EMI的传输通道可以分为传导干扰和辐射干扰两种。传导干扰包括容性耦合、感性耦合和电阻耦合。容性耦合通常发生在具有一定电容性的元件之间,感性耦合则是由于互感效应,而电阻耦合则涉及到公共阻抗。辐射干扰则是通过空间传播的电磁波,可以将干扰源的元器件和导线假设为天线,分析其辐射特性。没有屏蔽的情况下,电磁波会通过空气传输,而在有屏蔽的情况下,则需要考虑屏蔽体的缝隙和孔洞,用泄漏场的数学模型进行分析处理。 为了抑制EMI,设计中可以采取九种主要措施:第一,减小dv/dt和di/dt,降低它们的峰值并减缓变化斜率;第二,合理应用压敏电阻来降低浪涌电压;第三,采用阻尼网络抑制过冲;第四,使用具有软恢复特性的二极管,以降低高频段的EMI;第五,采用有源功率因数校正以及其他谐波校正技术;第六,设计合理的电源线滤波器;第七,进行合理的接地处理;第八,采取有效的屏蔽措施;第九,进行合理的PCB设计。通过这些措施,可以有效地减少开关电源对外界和自身产生的电磁干扰。 高频变压器的设计同样对抑制EMI至关重要。控制高频变压器的漏感是解决其EMI问题的首要任务。控制漏感的措施包括选择合适的磁芯以降低漏感,减小绕组间的绝缘层厚度,并且提高绕组之间的耦合度。在高频变压器的屏蔽方面,可以使用铜箔制成的屏蔽带,将其绕在变压器外部并接地,这样可以抑制漏磁场的泄漏。为了防止由于高频变压器磁心相对位移而产生的噪声,可以使用环氧树脂或“玻璃珠”胶合剂对磁心进行加固。 开关电源的设计中需要对EMI问题给予高度重视,通过合理的设计和选择适当的元件,可以有效地抑制EMI。这些知识和经验将有助于设计出既高效又符合EMC标准的开关电源。
2025-11-24 16:55:58 67KB 开关电源 技术应用
1
开关电源是一种常见的电力转换设备,广泛应用于电子设备中。然而,开关电源在工作过程中会产生电磁干扰(EMI),这会影响同一电源系统内其他设备的正常工作,同时也会影响周边的电子设备。因此,对开关电源进行EMI设计至关重要。 开关电源的EMI干扰源主要包括功率开关管、整流二极管、高频变压器等关键元件。这些元件在开关动作时会产生高dv/dt和di/dt,导致电场和磁场耦合,进而产生干扰。功率开关管在On-Off快速循环转换时产生显著的电压和电流变化,是电磁干扰的主要源头。高频变压器由于漏感效应,其快速变化的di/dt也是一个重要的干扰源。整流二极管的反向恢复特性会导致电路中的电感在电流断续点产生高dv/dt,从而产生电磁干扰。PCB作为元器件安装的基础,其布线和布局直接影响EMI干扰的强度和传导路径。 开关电源的EMI传输通道可以分为传导干扰和辐射干扰。传导干扰包括容性耦合、感性耦合和电阻耦合。其中,电阻耦合可以通过公共电源内阻、公共地线阻抗、公共线路阻抗来传导。辐射干扰则是由于开关电源中的元器件和导线可以假设为天线,按电偶极子和磁偶极子理论进行分析。没有屏蔽体时,电磁波通过空气传播;有屏蔽体时,需要考虑屏蔽体的缝隙和孔洞,并采用泄漏场的数学模型进行分析。 为了抑制EMI,可以采取以下措施:(1)减小dv/dt和di/dt,即降低其峰值和减缓变化斜率;(2)合理使用压敏电阻,以降低浪涌电压;(3)利用阻尼网络抑制电压过冲;(4)采用具有软恢复特性的二极管,减少高频段的EMI;(5)采用有源功率因数校正和其他谐波校正技术;(6)设计合理的电源线滤波器;(7)合理进行接地处理;(8)采取有效的屏蔽措施;(9)进行合理的PCB设计。 高频变压器的漏感是导致EMI的一个重要因素,因此需要控制漏感。控制措施包括:(1)选择合适的磁芯以降低漏感;(2)减小绕组间绝缘层厚度;(3)提高绕组间的耦合度。此外,使用屏蔽带屏蔽高频变压器的漏磁场,以抑制漏磁干扰;采用加固措施防止变压器在工作中的位移导致的噪声。 在PCB设计方面,应当注意合理布局,以减少EMI源的影响。布线应尽量短而粗,远离高阻抗区域,减少环路面积,避免高速信号的边沿过于陡峭,以减少高频噪声的产生。同时,通过合理布局和设计,可以减少线路间的串扰和耦合。 值得注意的是,尽管采取了各种EMI抑制措施,但由于电磁环境日益复杂,EMI问题仍旧是开关电源设计中不可忽视的一环。在设计时,应持续关注最新的EMC标准和测试方法,确保产品设计满足最新要求,并能够适应未来更严格的电磁兼容性要求。
2025-11-24 15:44:23 69KB 设计经验 技术应用
1
在开关电源设计中,EMI(电磁干扰)是影响电源性能和电磁兼容性(EMC)的关键因素。EMI干扰源主要来自于开关电源内部的功率开关管、整流二极管和高频变压器等元器件。这些元器件在高速切换时会产生高dv/dt和di/dt,即电压和电流的快速变化,从而导致电磁干扰。外部环境中的电网抖动、雷击和外界辐射也会对开关电源产生干扰。为了设计出符合EMC标准的开关电源,以下是一些重要的设计经验和知识点。 开关电源的EMI源包括功率开关管、整流二极管和高频变压器。功率开关管在开启和关闭的过程中,其电压和电流变化率(dv/dt和di/dt)非常高,因此它既是电场耦合也是磁场耦合的主要干扰源。高频变压器的漏感在磁芯关闭时会产生快速的电流变化,从而成为磁场耦合的重要干扰源。整流二极管的反向恢复特性会产生较高的电压变化率,导致电磁干扰。此外,PCB板设计也极其关键,因为它充当了上述干扰源之间的耦合通道。良好的PCB设计能够有效抑制EMI。 在开关电源EMI传输通道方面,可以将其分为传导干扰和辐射干扰。传导干扰的传输通道主要包括电源内阻、公共地线和公共线路阻抗所引起的电阻传导耦合。辐射干扰的传输通道则涉及到把元器件和导线假设成天线,利用电偶极子和磁偶极子理论进行分析。在没有屏蔽体的情况下,电磁波的传输通道是空气,而在有屏蔽体的情况下,则需考虑屏蔽体的缝隙和孔洞。 为了抑制EMI,可以采取以下几大措施:减小dv/dt和di/dt以降低干扰峰值和斜率;合理应用压敏电阻以降低浪涌电压;使用阻尼网络抑制过冲;采用具有软恢复特性的二极管降低高频段的EMI;实施有源功率因数校正和其他谐波校正技术;设计合理的电源线滤波器;进行合理的接地处理;采取有效的屏蔽措施;以及执行合理的PCB设计。 对于高频变压器而言,控制漏感是解决EMI问题的重要手段。这可以通过在电气设计和工艺设计上选择合适的磁芯和减小绕组间的绝缘层厚度来实现。同时,增加绕组间的耦合度也有助于减小漏感。此外,为了防止漏磁对周围电路的干扰,可以采用铜箔屏蔽带绕在变压器外部并接地。对于高频变压器的噪声(如啸叫、振动)问题,可以通过用环氧树脂粘接磁心或使用“玻璃珠”胶合剂来加固磁心,抑制相对位移的产生,从而减少噪声。 在开关电源设计中,必须通过优化元器件选择、布局、PCB设计、滤波和屏蔽技术等方法来有效控制EMI,确保电源的稳定性和可靠性,满足电磁兼容性要求。
2025-11-24 13:41:27 68KB EMC|EMI 开关电源
1
关于EMC-EMI方面的资料,有需要的可以下载!!!!!
2024-02-27 13:05:17 1.57MB EMC-EMI设计秘籍
1
有经验的电源开发者都知道,在PCB设计过程中便对EMI进行抑制,便能够在最大程度上在最后的过程中为EMI抑制的设计节省非常多的时间。本文将为大家讲解PCB当中EMI设计中的规范步骤,感兴趣的朋友快来看一看吧。   IC的电源处理   保证每个IC的电源PIN都有一个0.1UF的去耦电容,对于BGACHIP,要求在BGA的四角分别有0.1UF、0.01UF的电容共8个。对走线的电源尤其要注意加滤波电容,如VTT等。这不仅对稳定性有影响,对EMI也有很大的影响。      时钟线的处理   1)建议先走时钟线。   2)频率大
1