一维含时薛定谔方程和Lewenstein模型的比较,杜洪川,胡碧涛,本工作分别利用Lewenstein模型或一维数值求解含时薛定谔方程结合麦克斯韦方程研究了高次谐波和阿秒脉冲的产生。结果表明:对于单体�
2024-03-02 11:07:54 472KB 首发论文
1
渗透逆境引起构巢曲霉的NDR缺陷菌株极性生长恢复依赖于钙信号通路的存在,高莉娜,宋以菊,细胞极性的建立和维持需要不同信号途径间的相互协作,例如NDR蛋白磷酸酶信号通路和钙离子信号通路。NDR蛋白激酶家族在结构上与人类
2024-02-25 22:13:05 1.01MB 首发论文
1
Optimal control of the nonlinear one dimensional periodic wave equation with x-dependent coefficients,李恒燕,冀书关,This paper is concerned with an optimal control problem governed by the nonlinear one dimensional periodic wave equation with x-dependent coefficients. The control of the system is
2024-02-25 09:59:52 88KB 首发论文
1
matlab阶跃响应曲线代码价钱 程序文件,“基于平稳国家定价的分布动力学”,西班牙银行工作文件0831,2008年12月,(C)James Costain和Anton Nakov 操作方法 运行“ gedyn.m”以计算一般平衡动力学; 冲激响应是自动计算的 运行“ vd.m”以计算方差分解并估计菲尔普斯曲线系数 默认设置为泰勒规则。 要切换到货币增长规则,请在“ gedyn”中将“ phiPI”设置为0。 默认模型是SSDP。 要更改模型,请在“ gedyn”中更改“ adjtype”。 计算细节 在具有3Ghz CPU和1GB内存的普通奔腾4上,一般均衡稳态计算需要几秒钟的时间。 动态计算大约需要2-3分钟。 由于大部分时间(最慢的步骤)花费在QZ分解上,因此很难加快速度,QZ分解使用内置的MATLAB函数qz。 所有程序文件列表 调整-根据调整收益计算调整概率 calcstats-计算稳态统计 compute_IRFs-根据初始状态和冲击来计算动态路径(泰勒规则) compute_IRFsM-根据初始状态和冲击计算动态路径(货币法则) disclyap-解决离散Lyapunov
2023-02-14 03:14:20 69KB 系统开源
1
Layout Dependent Effect.Layout Dependent Effect. Layout Dependent Effect.Layout Dependent Effect.
2022-10-12 16:15:08 2.61MB Layout Dependent
1
解决libarcsoft_face.dll:Cant‘t find dependent library报错,相关文章:https://blog.csdn.net/chw0629/article/details/122557038
2022-02-26 09:00:51 3.96MB libstdc++
1
Time dependent problems frequently pose challenges in areas of science and engineering dealing with numerical analysis, scientific computation, mathematical models, and most importantly—numerical experiments intended to analyze physical behavior and test design. Time Dependent Problems and Difference Methods addresses these various industrial considerations in a pragmatic and detailed manner, giving special attention to time dependent problems in its coverage of the derivation and analysis of numerical methods for computational approximations to Partial Differential Equations (PDEs). The book is written in two parts. Part I discusses problems with periodic solutions; Part II proceeds to discuss initial boundary value problems for partial differential equations and numerical methods for them. The problems with periodic solutions have been chosen because they allow the application of Fourier analysis without the complication that arises from the infinite domain for the corresponding Cauchy problem. Furthermore, the analysis of periodic problems provides necessary conditions when constructing methods for initial boundary value problems. Much of the material included in Part II appears for the first time in this book. The authors draw on their own interests and combined extensive experience in applied mathematics and computer science to bring about this practical and useful guide. They provide complete discussions of the pertinent theorems and back them up with examples and illustrations. For physical scientists, engineers, or anyone who uses numerical experiments to test designs or to predict and investigate physical phenomena, this invaluable guide is destined to become a constant companion. Time Dependent Problems and Difference Methods is also extremely useful to numerical analysts, mathematical modelers, and graduate students of applied mathematics and scientific computations.
2022-02-11 15:49:25 7.72MB PDE Number
1
基于间隙的强化学习无监督探索_Gap-Dependent Unsupervised Exploration for Reinforcement Learning.pdf
2022-01-30 09:03:52 821KB cs
基于目标相关单元的家用服务机器人多模态语言理解模型_Target-dependent UNITER A Transformer-Based Multimodal Language Comprehension Model for Domestic Service Robots.pdf
2022-01-28 14:02:10 7.73MB transformer 深度学习 人工智能 cs
尖峰时间依赖性可塑性 该程序在突触后放电之前出现突触前尖峰时增强相关突触权重,并在突触后放电后出现突触前尖峰时减弱相关突触权重。 如果突触前和突触后尖峰时间之间的差异幅度很小,则突触权重修改量最大,并且随着差异变大而呈指数减小。 如果两个连接的神经元的尖峰时间差异大于 20 毫秒,则不会发生任何修改。 改变突触功效的功能基于 Song S.、Miller KD 和 Abbott LF 的生物学模型“通过尖峰时间依赖的突触可塑性进行竞争性赫布学习”,Nature Neuroscience vol. 3,没有。 9, pp. 919-926, 2000。该机制基于以下想法。 突触后放电之后的突触前动作电位不太可能完全影响突触后放电(尤其是在紧随其后的情况下),但合乎逻辑的是,突触后放电之前的突触前动作电位在导致突触后尖峰(尤其是更早一点)。 该程序不会创建或消除突触连接,它只是修改现有的突触权
2021-11-04 18:21:23 3KB
1