如果你对DFace感兴趣并且想参与到这个项目中, 以下TODO是一些需要实现的功能,我定期会更新,它会实时展示一些需要开发的清单。提交你的fork request,我会用issues来跟踪和反馈所有的问题。也可以加DFace的官方Q群 681403076 也可以加本人微信 jinkuaikuai005 TODO(需要开发的功能) 基于center loss 或者triplet loss原理开发人脸对比功能,模型采用ResNet inception v2. 该功能能够比较两张人脸图片的相似性。具体可以参考 Paper和FaceNet 反欺诈功能,根据光线,质地等人脸特性来防止照片攻击,视频攻击,回放攻击等。具体可参考LBP算法和SVM训练模型。 3D人脸反欺诈。 mobile移植,根据ONNX标准把pytorch训练好的模型迁移到caffe2,一些numpy算法改用c++实现。 Tensor RT移植,高并发。 Docker支持,gpu版 安装 DFace主要有两大模块,人脸检测和人脸识别。我会提供所有模型训练和运行的详细步骤。你首先需要构建一个pytorch和cv2的python环境
2023-04-06 20:21:31 3.71MB MTCNN Center-Loss 多人实时人脸检测
1
火炬中心损失 Pytorch实现中心损失的方法: ( )也使用此损失函数。 开始吧 克隆此仓库并运行代码 $ git clone https://github.com/KaiyangZhou/pytorch-center-loss $ cd pytorch-center-loss $ python main.py --eval-freq 1 --gpu 0 --save-dir log/ --plot 您将在终端中看到以下信息 Currently using GPU: 0 Creating dataset: mnist Creating model: cnn == > Epoch
2021-11-10 16:21:10 5.65MB python computer-vision deep-learning pytorch
1
Center Loss
2021-05-20 13:06:03 1.03MB CenterLoss
1
**DFace** 是个开源的深度学习人脸检测和人脸识别系统。所有功能都采用 **[pytorch](https://github.com/pytorch/pytorch)** 框架开发。pytorch是一个由facebook开发的深度学习框架,它包含了一些比较有趣的高级特性,例如自动求导,动态构图等。DFace天然的继承了这些优点,使得它的训练过程可以更加简单方便,并且实现的代码可以更加清晰易懂。 DFace可以利用CUDA来支持GPU加速模式。我们建议尝试linux GPU这种模式,它几乎可以实现实时的效果。
2019-12-21 21:38:05 3.71MB 人脸识别
1