本数据集来自中国新疆哈密地区某风电场,涵盖2019年全年(1月1日至12月31日)的风电及相关气象信息,数据由现场传感器每15分钟采样一次,共计 35,040 条记录,具有高时间分辨率和多维度特征,适用于短期风电预测、时间序列建模、多变量回归等研究场景。 在能源领域,特别是在风能的开发利用中,准确预测风电功率对于提高风电场的运营效率和效益至关重要。新疆地区,作为中国风能资源丰富的区域之一,具备建立风电站得天独厚的地理条件。本数据集便是来源于中国新疆哈密地区的一处风电场,它收集了该风电场在2019年全年的风电功率数据以及相关气象信息,为风电功率预测提供了宝贵的第一手资料。 数据集的详细信息显示,其包含了35,040条记录,时间跨度为一年,每15分钟采集一次数据,这保证了数据具有较高的时间分辨率。这些数据不仅关注风电功率本身,而且包括了风速、风向、温度、气压等气象要素。由于风电功率受多种气象条件的影响,这些多维度的特征数据为进行数据分析和模型建立提供了充足的变量。 在数据集的应用层面,它不仅适用于短期风电预测,还能够广泛应用于时间序列分析、多变量回归分析等先进的数据分析场景。这为机器学习、深度学习等领域的研究者和工程师提供了实验和探索的平台。通过对这些数据的分析和学习,可以建立有效的预测模型,从而实现对风电功率变化趋势的准确预测,这有助于风电场管理者做出更科学的发电调度决策,提高风电发电的稳定性和经济性。 此外,这些数据还可以被用来评估和优化风力发电机组的性能,指导风力发电设备的设计和维护工作,甚至为电力市场的交易策略提供数据支持。因此,该数据集不仅在学术研究中具有重要价值,同样在风电行业的实际生产运营中也具有极大的应用前景。 对于技术人员和研究者而言,这种高精度、高时间分辨率的风电数据集是十分珍贵的资源。通过挖掘这些数据,不仅可以提升风电场的发电效率,还可以推动新能源技术的进步,为实现绿色能源的可持续发展贡献力量。 总体而言,这份来自新疆哈密风电站的风电功率预测数据集,为风电行业研究者提供了一个极具价值的数据源,促进了风电功率预测技术的发展,并为新能源的高效利用和智慧能源管理提供了科学依据。
2025-12-17 16:51:16 2.88MB 数据集 机器学习 深度学习
1
道路积水检测数据集包含2699张图片,这些图片适用于目标检测任务,特别是针对道路积水的情况。该数据集采用Pascal VOC格式和YOLO格式,前者通常用于机器学习和计算机视觉研究中的目标检测任务,包括图片文件、XML格式的标注文件以及YOLO格式的文本文件,不含图像分割路径的txt文件。在本数据集中,所有的标注都是以矩形框的形式来定义道路积水的位置。 该数据集中的标注信息非常详细,包含了2699张jpg格式的图片,每张图片都对应有一个XML文件进行标注,以及一个YOLO格式的文本文件。这些文件共同构成了一个强大的训练和验证工具集,能够帮助研究人员和开发者训练出能够识别和定位道路积水的算法模型。 数据集包含了单一的标注类别,即“water”,代表水或积水。在所有标注的图片中,共有3777个矩形框用于标注积水区域,每个矩形框对应了道路积水的位置和面积。这些标注数据对于目标检测算法来说极为重要,因为它们提供了真实世界情况下的视觉信息,是算法学习和理解积水模式的基础。 在标注过程中,使用了流行的标注工具labelImg,它是一款易于使用的图像标注软件,支持矩形框标注,并生成相应的标注文件。而数据集中的标注规则是将道路积水区域以矩形框的形式进行标注。 重要的是,制作者声明数据集的准确性保证,但不对其训练出的模型或权重文件的精度进行保证。这意味着尽管数据集经过了精确的标注和整理,但是最终模型的性能还会受到其他因素的影响,包括模型架构、训练过程以及算法选择等。 该数据集适用于机器学习和深度学习研究,特别是针对图像识别和目标检测的研究领域。由于该数据集标注的特定性,它的应用范围可以扩展到道路安全监控、自动驾驶车辆的导航系统以及智慧城市的基础设施维护等多个领域,能够帮助开发者和研究人员识别和缓解因道路积水可能引起的安全问题。
2025-12-17 10:11:43 4.35MB 数据集
1
VOCdevkit是广泛用于计算机视觉研究的数据集开发工具包,尤其在语义分割领域有着重要的应用。这个数据集,名为“VOC2007语义分割数据集”,是PASCAL VOC(Pattern Analysis, Statistical Modelling and Computational Learning, Visual Object Classes)挑战赛的一部分,该挑战赛始于2005年,旨在推动计算机视觉技术的发展。 语义分割是一种图像分析任务,它的目标是将图像中的每个像素分配到预定义的类别中,如人物、车辆、背景等。这与物体检测不同,物体检测关注的是识别和定位图像中的独立对象,而语义分割则更注重理解图像的整体结构,将像素级别的分类应用到整个图像。 VOC2007数据集包含了多个类别的图像,每个类别都精细地标记了像素级别,这些标记是训练和评估语义分割模型的基础。数据集由训练集、验证集和测试集组成,每部分都有对应的图像和相应的ground truth标签。训练集用于模型的学习,验证集用于调整模型参数和防止过拟合,而测试集则用于评估最终模型的性能。 VOCdevkit包含以下关键组件: 1. **Annotations**:这是图像的像素级标注信息,以XML文件形式存储,详细列出了图像中每个对象的边界框和类别。 2. **Images**:包含JPEG格式的原始图像文件,用于训练和评估模型。 3. **ImageSets**:这是一个文本文件集合,定义了训练、验证和测试集的图像列表。 4. **SegmentationClass**:这部分提供了每个图像的像素级分类掩码,是语义分割的主要目标。 5. **SegmentationObject**:这部分包含每个对象的边界框信息,通常用于物体检测任务。 使用VOC2007语义分割数据集时,研究人员通常会采用深度学习方法,如卷积神经网络(CNNs),例如FCN(全卷积网络)、U-Net、SegNet等,来构建和训练模型。在模型训练过程中,损失函数(如交叉熵损失)会计算预测结果与实际标签之间的差异,通过反向传播更新网络权重。在评估模型时,常用的指标有IoU(Intersection over Union)、Precision、Recall和mIOU(mean Intersection over Union)等。 此外,为了提高模型性能,研究人员可能还会利用数据增强技术,如翻转、旋转、缩放等,增加模型的泛化能力。同时,多尺度训练和测试也是常用策略,以应对不同大小的对象。 总而言之,VOC2007语义分割数据集是计算机视觉研究者和开发者的重要资源,它为开发和评估语义分割算法提供了标准化的平台,促进了相关技术的进步。通过深入理解和有效利用这个数据集,我们可以构建出更强大的语义分割模型,进一步推动自动驾驶、医疗影像分析、无人机导航等领域的技术发展。
2025-12-16 23:28:20 983.91MB
1
本文介绍了一个包含8457张图片的车辆分类识别数据集,支持YOLO和VOC格式标注,涵盖7种车辆类型(如大巴车、轿车、行人等)。数据集适用于无人机航拍、监控视频等场景,可用于智慧交通管理,如车流量管控、交通拥堵预警等。文章详细讲解了数据集的标注格式、文件结构及适用范围,并提供了基于YOLOv8的训练教程,包括数据导入、分割、格式化处理及模型训练步骤。此外,还介绍了如何使用QT开发目标检测可视化界面,展示了图片和视频检测效果,并提供了前端代码示例。数据集可通过文章底部或主页私信获取。 文章详细介绍了车辆分类识别数据集,该数据集包含8457张图片,为机器学习和深度学习提供了丰富的学习样本。数据集中的图片支持YOLO和VOC格式标注,具体包括大巴车、轿车、行人等七种车辆类型,使得数据集具备了较高的实用价值。 这些数据不仅可以用于传统的目标检测和识别任务,还可以应用于无人机航拍、监控视频等特殊场景,尤其在智慧交通管理系统中,可以实现对车流量的管控、交通拥堵的预警等功能,从而大幅提高交通管理的效率和准确性。 文章还详细解读了数据集的标注格式、文件结构以及其适用范围,使得使用者能够更好地理解和应用该数据集。同时,作者提供了一份基于YOLOv8的训练教程,这个教程涵盖了从数据导入、分割、格式化处理到模型训练的完整步骤。这一教程无疑对那些想要学习或应用YOLO算法的开发者和技术人员具有极大的指导价值。 此外,文章还介绍了如何使用QT进行目标检测可视化界面的开发,这不仅加深了读者对目标检测应用场景的理解,还提供了一个实际操作的案例。通过文章内容,读者可以看到图片和视频检测的实际效果,并能直接获取到前端代码示例。 数据集的获取途径也被详细提供,读者可以通过文章底部或主页私信来获得这个宝贵的学习和研究资源。该数据集和相关教程对于推动车辆识别技术的发展和应用具有重要意义。
2025-12-16 10:46:15 7KB 目标检测 YOLO 数据集
1
基于GADF(Gramian Angular Difference Field)、CNN(卷积神经网络)和LSTM(长短期记忆网络)的齿轮箱故障诊断方法。首先,通过GADF将原始振动信号转化为时频图,然后利用CNN-LSTM模型完成多级分类任务,最后通过T-SNE实现样本分布的可视化。文中提供了具体的Matlab代码实现,包括数据预处理、GADF时频转换、CNN-LSTM网络构建以及特征空间分布的可视化。实验结果显示,在东南大学齿轮箱数据集上,该方法达到了96.7%的准确率,显著优于单一的CNN或LSTM模型。 适合人群:从事机械故障诊断的研究人员和技术人员,尤其是对深度学习应用于故障诊断感兴趣的读者。 使用场景及目标:适用于需要对齿轮箱进行高效故障诊断的应用场合,如工业设备维护、智能制造等领域。目标是提高故障检测的准确性,减少误判率,提升设备运行的安全性和可靠性。 其他说明:该方法虽然效果显著,但在实际应用中需要注意计算资源的需求,特别是在工业现场部署时,建议预先生成时频图库以降低实时计算压力。
2025-12-15 21:12:41 731KB
1
VOC硬币数据集是一个专门用于人民币硬币识别的图像数据集,采用了广泛使用的XML格式进行标注。这个数据集包含了三种不同类型的硬币:一元(yiyuan)、五角(wujiao)和一角(yijiao)。在计算机视觉和机器学习领域,这样的数据集是训练和验证图像分类或对象检测模型的基础。 让我们详细了解一下XML数据集的结构。XML(eXtensible Markup Language)是一种用于存储和传输数据的标记语言,它的特点是结构清晰、易于解析。在计算机视觉中,XML文件通常用来存储图像的边界框信息、类别标签以及其它元数据。对于VOC硬币数据集,每个XML文件对应一个图像文件,包含了图像内硬币的位置和类型信息。 XML文件的结构大致如下: ```xml 硬币数据集 硬币图像.jpg /path/to/硬币图像.jpg 自定义数据库 图像宽度像素 图像高度像素 图像通道数(通常是3,RGB) 0 硬币类型(如一元、五角、一角) Unspecified 0或1(是否被截断) 0或1(是否为困难样本) 边界框左上角X坐标 边界框左上角Y坐标 边界框右下角X坐标 边界框右下角Y坐标 ``` 利用这个数据集,可以训练深度学习模型,例如基于Faster R-CNN、YOLO或SSD的物体检测模型,以识别图像中的硬币类型。在训练之前,需要对XML文件进行预处理,提取出边界框信息和对应的类别标签,然后将这些信息与对应的图像数据一起输入到模型中进行训练。 在模型训练过程中,可以使用数据增强技术,如随机旋转、翻转、缩放等,来增加模型的泛化能力。此外,由于硬币样本数量可能有限,可能需要使用迁移学习,将预训练在大规模数据集(如ImageNet)上的模型权重作为初始权重,以加速学习过程并提高性能。 训练完成后,通过评估指标如平均精度(mAP)来衡量模型的性能。在测试阶段,模型会预测图像中硬币的边界框和类别,并可以应用于实际的硬币识别场景,例如自动售货机或者硬币分拣系统。 VOC硬币数据集是一个实用的资源,它可以帮助研究者和开发者在人民币硬币识别任务上构建和优化算法。通过深入理解和有效利用XML标注信息,我们可以构建出高精度的计算机视觉模型,推动这一领域的技术进步。
2025-12-15 09:07:43 786.83MB 数据集 VOC数据集
1
这是一个涵盖物流配送信息的数据集,包含837条记录,涉及Delhivery、FedEx、DHL、Blue Dart、Amazon Logistics等多个物流合作伙伴的包裹配送情况。数据集内容丰富,详细记录了各类配送属性,包括包裹类型(如电子产品、食品杂货、文件、易碎品等)、交通工具类型(如自行车、摩托车、货车、卡车,含电动车型)、配送模式(当日达、快递、两天达、标准配送)、地理区域、天气状况、配送距离、包裹重量及成本指标等。此外,还包含配送状态(已送达、延迟、失败)、客户评分(1 - 5级)以及实际与预期配送时间的对比等性能指标。 不过,该数据集存在一些问题,需要进行数据清洗。例如,时间戳格式有误,出现了占位符1970日期;配送标识符不一致;还有一条不完整的最终记录。尽管如此,这个数据集仍具有很高的研究价值。通过对它进行分析,可以从多个维度评估配送绩效,如分析不同承运人的效率、各区域的运营情况、天气对配送的影响、成本结构以及客户满意度等。这些分析结果能为电子商务和供应链运营中的物流优化及服务质量提升提供重要参考和宝贵见解,助力相关企业更好地制定策略,提高运营效率和服务水平。
2025-12-14 21:36:07 563KB 机器学习 预测模型
1
psf的matlab代码svDeconRL 基于Richardson-Lucy算法的总空间正则化的自由空间变异卷积 随该代码发布的出版物已发布在(开放获取)[1]中: Raphaël Turcotte, Eusebiu Sutu, Carla C. Schmidt, Nigel J. Emptage, Martin J. Booth (2020). "Title", Journal, doi: X 该存储库包含使用具有空间变异点响应的系统对2D图像进行反卷积所需的MATLAB代码。 反卷积基于经过改进的Richardson-Lucy算法,该算法具有总变化正则化以解决空间变化点响应。 还提供了样本数据集。 代码: RLTV_SVdeconv.m:使用基于特征PSF分解的空间变量PSF模型执行具有总变化(TV)正则化的Richardson-Lucy反卷积的功能。 TVL1reg.m:函数使用L1范数在数组M的散度上计算RL算法的总变化正则化因子 ScriptLRTV.m:针对几种模式,迭代次数和TV系数值的给定输入,迭代调用RLTV_SVdeconv()函数的示例脚本。 makeEdgeA
2025-12-10 18:36:25 166.86MB 系统开源
1
yolov5手势识别数据集是一个专为深度学习中的目标检测算法设计的数据集,它支持训练yolov5模型来实现手势识别功能。该数据集包含多种常用手势的图片,例如OK手势、打电话手势和停止手势等。这类手势通常在人机交互中具有重要意义,能够帮助机器理解用户的指令,因此在智能家居、自动驾驶等领域有着广泛的应用前景。 数据集通常由大量的图像样本组成,每一幅图像中都标注了对应的手势位置,标注形式一般为矩形框,这些矩形框准确地框出了手势在图片中的具体位置。在深度学习训练过程中,这些标注信息对于算法学习识别手势至关重要。数据集还可能包括对应的标注文件,详细说明了每个矩形框的类别和坐标信息。这样经过训练的模型就能够自动识别出图片中的手势类别以及其在图片中的位置。 在实际应用中,手势识别数据集可以通过各种途径收集,比如通过网络下载、使用公开数据集、或者使用摄像头实时采集等方式。对于使用yolov5算法训练手势识别模型,通常需要在模型训练前对数据集进行预处理,包括图像的归一化、缩放等步骤。同时,还需要按照一定的格式组织数据集,例如划分训练集、验证集和测试集,确保模型训练的有效性和泛化能力。 由于数据集的多样性,它还可能涉及到不同光照条件、不同手势姿态以及复杂背景下的图片,以确保模型能够适应真实世界中各种场景,提高模型的鲁棒性和实用性。在模型的评估阶段,还可以使用诸如准确率、召回率、mAP(mean Average Precision)等指标来衡量模型对手势识别的性能。 值得注意的是,数据集的品质直接影响到模型的性能。因此,在收集数据时要注重数据的多样性和质量,确保数据集涵盖各种可能出现的场景和手势形态。此外,数据集的维护工作也不容忽视,需要定期更新数据集以包含新出现的手势或者新的场景变化,确保模型能够持续适应新的需求。 yolov5手势识别数据集是针对特定任务专门设计的,它不仅方便研究者快速开始模型训练,还通过提供丰富的标注信息和多样化的图片,有助于训练出一个实用性强的手势识别模型。随着技术的发展,手势识别的应用场景将会更加广泛,对于提高人机交互体验具有重要意义。
2025-12-10 09:25:37 896.05MB 数据集 yolov5 手势识别
1
YOLO与VOC格式的柑橘缺陷识别数据集,适用于YOLO系列、Faster Rcnn、SSD等模型训练,共4个类别,类别:Orange-Green-Black-Spot、Orange-Black-Spot、Orange-Canker、Orange-Healthy,图片数量1290。文件中包含图片、txt标签、指定类别信息的yaml文件、xml标签,已将图片和txt标签划分为训练集、验证集和测试集,可直接用于YOLOv5、YOLOv6、YOLOv7、YOLOv8、YOLOv9、YOLOv10等YOLO系列算法的训练。数据集介绍请看链接:https://blog.csdn.net/qq_53332949/article/details/140980664
2025-12-09 17:43:46 44.07MB 数据集 目标检测 深度学习 yolo
1