TinyExpr TinyExpr是用于数学表达式的非常小的递归下降解析器和评估引擎。 当您想在运行时增加对数学表达式求值的能力而又不给项目增加麻烦时,它非常方便。 除标准数学运算符和优先级外,TinyExpr还支持标准C数学函数和变量的运行时绑定。 特征 C99没有依赖项。 单个源文件和头文件。 简单快捷。 实现标准运算符优先级。 公开标准C数学函数(sin,sqrt,ln等)。 可以轻松添加自定义函数和变量。 可以在评估时绑定变量。 根据zlib许可发行-几乎免费使用。 易于使用并与您的代码集成 线程安全,前提是您的malloc是。 建造 TinyExpr是独立的,包含两个文件: tinyexpr.c和tinyexpr.h 。 要使用TinyExpr,只需将这两个文件添加到您的项目中。 简短的例子 这是在运行时评估表达式的最小示例。 # include "
2025-06-16 13:47:25 41KB
1
内容概要:这份试卷涵盖了算法设计与分析课程的核心知识点,主要包括五个大题。第一题要求设计并优化一个递归算法用于计算2^n的值,分析其时间复杂度,并提出改进措施以提高效率。第二题聚焦于无序数组中位数的查找,不仅需要阐述算法思想,还要具体演示查找过程及其键值比较次数。第三题涉及递归方程求解,要求给出解析解。第四题围绕堆排序展开,包括最大堆的构建、降序排序的具体步骤以及时间复杂度分析。第五题则探讨了最短路径问题和背包问题,前者要求设计算法计算任意两点间的最短路径并分析时间复杂度,后者要求针对给定实例设计三种贪心算法和自底向上的动态规划算法求解最优解,同时分析算法的时间复杂度。; 适合人群:计算机科学相关专业的大二及以上学生,尤其是正在学习或复习算法设计与分析课程的学生。; 使用场景及目标:①帮助学生巩固课堂上学到的理论知识,如递归、排序、贪心算法、动态规划等;②通过实际题目练习,提高解决复杂问题的能力;③为准备期末考试或其他相关考试提供参考和练习材料。; 阅读建议:由于试卷题目较为抽象且涉及较多数学推导,建议在解答前先复习相关概念和公式,再尝试独立完成每道题目。可以将此试卷作为阶段性测试工具,在学习完相应章节后进行自我检测。
1
递归算法详细分析-C语言实现 递归算法是一种常用的编程技术,它通过函数自身的调用来解决问题。递归函数可以分为两种:直接递归和间接递归。直接递归是指一个函数直接调用自身,而间接递归是指一个函数通过其他函数调用自身。 在C语言中,递归函数的实现依赖于运行时堆栈的支持。每当一个函数被调用时,它的变量都会被存储在堆栈上。当一个递归函数调用自身时,它的变量会被重新分配在堆栈上,以便在下一个递归调用中使用。 递归算法的优点是它可以简洁地解决一些复杂的问题,但它也存在一些缺点,如递归函数的调用可能会导致栈溢出等问题。 在本文中,我们将通过一个简单的程序来说明递归算法的实现。该程序的目的是将一个整数从二进制形式转换为可打印的字符形式。 我们需要了解递归函数的工作原理。递归函数的执行过程可以分为三步:将参数值除以10;如果商的值不为零,则调用递归函数打印商的当前值的各位数字;打印步骤1中除法运算的余数。 递归函数的关键是它的限制条件。当递归函数的参数值达到某个限制条件时,递归函数便会终止。在本程序中,限制条件是变量 quotient 的值为零。 为了更好地理解递归函数的工作原理,我们需要追踪递归函数的执行过程。这可以通过了解函数中所声明的变量是如何存储的。在每次递归调用中,变量的空间都是在堆栈上创建的。以前调用的函数的变量都会保留在堆栈上,但它们被新函数的变量所掩盖,因此是不能被访问的。 在追踪递归函数的执行过程时,我们需要区分不同的递归调用,以避免混淆。这可以通过了解每次递归调用的变量是如何存储的。 在本文中,我们还讨论了递归算法的优点和缺点,并提供了一个简单的程序来说明递归算法的实现。 递归算法的优点包括: * 递归算法可以简洁地解决一些复杂的问题 * 递归算法可以使代码变得更加简洁易懂 递归算法的缺点包括: * 递归函数的调用可能会导致栈溢出等问题 * 递归算法的执行速度可能会很慢 在结论中,我们可以看到递归算法是非常有用的编程技术,但我们需要小心地使用它,以避免出现问题。 递归算法是一种非常有用的编程技术,它可以简洁地解决一些复杂的问题。但我们需要小心地使用它,以避免出现问题。
2025-05-30 16:51:18 46KB 递归算法
1
通过本次实习加强了对二叉树的建立和各种遍历操作的了解。 1. 学会并实现二叉树的建立; 2. 掌握二叉树的遍历思想和存储实现; 3. 掌握二叉树的先序中序后序递归遍历; 4. 掌握二叉树的先序中序后序层序非递归遍历; 5.编制程序实现二叉树遍历算法并运行。 正文 二、综合训练任务描述 这次实习的主要任务是对二叉树的先序、中序、后序的递归与非递归遍历算法,按层次遍历的非递归遍历算法的实现,同时也实现了对二叉树的创建的算法。 三、算法设计 (1) 文字描述 1、程序中的核心数据结构的定义及其说明: typedef struct BiTNode { TElemType data; BiTNode *lchild,*rchild; } BiTNode,*BiTree; 在程序中定义了二叉树的链式存储结构,其中包括二叉树的3个域:数据域和左右指针域。 2.程序共分为几个部分: 第一部分:栈的构建、销毁、进栈和出栈等一些基本操作; 第二部分:队列的构建、销毁、入队和出队等一些基本操作; 第三部分:最主要的一部分包括了二叉树的各种操作:先序模块,中序模块,后序模块,层序模块;它们分别完成了二叉树的建立,以及递归、非递归的先序遍历、中序遍历、后序遍历和层序遍历算法:其中先序中序后序的递归遍历算法是利用二叉树的链式存储结构进行的遍历。 ### 二叉树遍历论文知识点汇总 #### 综合训练目的与要求 - **学习目标**:通过本次实习,加深对二叉树的理解,并掌握其建立与遍历方法。 - **理解并实现二叉树的建立**:能够根据给定的数据结构,构建出具体的二叉树实例。 - **掌握二叉树的遍历思想和存储实现**:理解二叉树遍历的基本原理,包括递归与非递归方法。 - **掌握二叉树的先序、中序、后序遍历**:熟练应用递归方法完成这三种遍历方式。 - **掌握二叉树的层序遍历**:实现非递归的层序遍历算法。 - **编写程序实现遍历算法并运行**:能够编写代码实现以上所述的所有遍历方法,并对其进行验证。 #### 二叉树的创建与遍历概述 - **二叉树定义**:二叉树是一种每个节点最多有两个子节点的树形结构。通常将这两个子节点称为“左子节点”和“右子节点”。在计算机科学中,二叉树是一个重要的数据结构,用于表示层级关系或进行搜索操作。 - **数据结构定义**: ```c typedef struct BiTNode { TElemType data; // 数据域 BiTNode *lchild, *rchild; // 左右子节点指针 } BiTNode, *BiTree; ``` 这里定义了一个二叉树节点的数据结构,包括一个数据域和两个指向子节点的指针。 - **算法设计与实现**: - **栈与队列的基础操作**:栈用于实现递归遍历的非递归版本,队列用于实现层序遍历。 - **先序、中序、后序遍历**: - **递归遍历**:基于二叉树的递归性质实现。 - **非递归遍历**:使用栈来模拟递归调用的过程。 - **层序遍历**:采用队列实现,逐层访问节点。 #### 具体实现细节 1. **二叉树的创建**: - 使用先序遍历来创建二叉树,根据输入的字符构建节点。当遇到特殊字符`'#'`时,表示该位置为叶子节点。 ```c void CreateBiTreePreOrder(BiTree &T) { charch; scanf("%c", &ch); if (ch == '#') { T = NULL; } else { if (!(T = (BiTNode *)malloc(sizeof(BiTNode)))) { exit(-1); } T->data = ch; CreateBiTreePreOrder(T->lchild); CreateBiTreePreOrder(T->rchild); } } ``` 2. **先序遍历**: - **递归算法**:首先访问根节点,然后递归地遍历左子树和右子树。 - **非递归算法**:使用栈模拟递归过程,先将根节点压入栈中,然后每次从栈顶取出节点访问,并依次将其右子节点和左子节点压入栈中。 ```c void PreOrderTraverse(BiTree T, int(*Visit)(TElemType)) { BiTree p; SqStack S; InitStack(S); Push(S, T); while (!StackEmpty(S)) { Pop(S, p); Visit(p->data); if (p->rchild != NULL) { Push(S, p->rchild); } if (p->lchild != NULL) { Push(S, p->lchild); } } DestroyStack(S); } ``` 3. **中序遍历**: - **递归算法**:首先递归遍历左子树,然后访问根节点,最后递归遍历右子树。 - **非递归算法**:使用栈辅助实现。从根节点开始,将其压入栈中,然后不断压入左子节点直到左子节点为空,此时开始出栈并访问节点,之后再将其右子节点压入栈中继续重复上述过程。 ```c void InOrderTraverse(BiTree T, int(*Visit)(TElemType)) { BiTree p; SqStack S; InitStack(S); p = T; while (p || !StackEmpty(S)) { if (p) { Push(S, p); p = p->lchild; } else { Pop(S, p); if (!Visit(p->data)) { return; } p = p->rchild; } } DestroyStack(S); } ``` 4. **后序遍历**: - **递归算法**:先递归遍历左子树,然后递归遍历右子树,最后访问根节点。 - **非递归算法**:与中序遍历类似,但需要注意调整访问顺序。 5. **层序遍历**: - 使用队列实现,将根节点入队,然后逐层处理队列中的节点。对于每个节点,先访问它,然后将其左右子节点(如果存在的话)依次入队。 #### 总结 通过上述实习内容的学习,可以深入理解二叉树的基本概念及其遍历方法。递归与非递归遍历都是解决遍历问题的重要手段,各有优缺点。递归方法简洁易懂,但在大规模数据集上可能会导致栈溢出等问题;而非递归方法虽然代码相对复杂,但在空间效率方面表现更佳。此外,通过对这些遍历算法的实现,还能进一步提升编程技能和解决问题的能力。
1
二叉树是一种重要的数据结构,它由节点组成,每个节点最多有两个子节点,通常称为左子节点和右子节点。二叉树的概念在计算机科学中广泛应用于搜索、排序、文件系统等领域。本主题将深入探讨如何用源代码实现二叉树的建立、先序、中序、后序遍历,并讨论递归与非递归两种遍历方法。 我们要理解二叉树的基本操作。在C语言中,我们可以创建一个结构体来表示二叉树的节点,包含两个指针(left和right)分别指向左子节点和右子节点,以及一个用于存储数据的字段(如int data)。例如: ```c typedef struct Node { int data; struct Node* left; struct Node* right; } Node; ``` 接下来,我们将讨论如何构建二叉树。二叉树的构建通常涉及插入新节点。假设我们有一个函数`insertNode(Node** root, int value)`,该函数接受根节点的指针和要插入的值。如果根节点为空,我们就创建一个新的节点作为根;否则,我们根据值的大小决定将其插入左子树还是右子树。 对于遍历,有三种主要的方式:先序遍历、中序遍历和后序遍历。 1. **先序遍历**:访问根节点 -> 遍历左子树 -> 遍历右子树。递归实现如下: ```c void preOrderTraversal(Node* node) { if (node == NULL) return; printf("%d ", node->data); preOrderTraversal(node->left); preOrderTraversal(node->right); } ``` 非递归实现可以使用栈来辅助完成: ```c void preOrderTraversalNonRecursive(Node* node) { stack s; while (node != NULL || !s.empty()) { while (node != NULL) { printf("%d ", node->data); s.push(node); node = node->left; } if (!s.empty()) { node = s.top(); s.pop(); node = node->right; } } } ``` 2. **中序遍历**:遍历左子树 -> 访问根节点 -> 遍历右子树。递归实现: ```c void inOrderTraversal(Node* node) { if (node == NULL) return; inOrderTraversal(node->left); printf("%d ", node->data); inOrderTraversal(node->right); } ``` 非递归实现同样使用栈: ```c void inOrderTraversalNonRecursive(Node* node) { stack s; Node* curr = node; while (curr != NULL || !s.empty()) { while (curr != NULL) { s.push(curr); curr = curr->left; } if (!s.empty()) { curr = s.top(); s.pop(); printf("%d ", curr->data); curr = curr->right; } } } ``` 3. **后序遍历**:遍历左子树 -> 遍历右子树 -> 访问根节点。递归实现需要借助额外的栈或队列,这里仅展示递归实现: ```c void postOrderTraversal(Node* node) { if (node == NULL) return; postOrderTraversal(node->left); postOrderTraversal(node->right); printf("%d ", node->data); } ``` 非递归实现较为复杂,涉及到访问节点时的标记机制。 在`tree_01.c`文件中,很可能包含了这些功能的实现。通过阅读和理解这段代码,你可以更深入地了解二叉树的构造和遍历。对于二叉树的学习,不仅限于理解和编写代码,还需要理解其背后的逻辑和应用,这有助于提升你在算法和数据结构方面的技能。
2025-03-27 23:12:31 817KB 二叉树,递归遍历,非递归遍历
1
"C++递归函数ppt课件" 本资源是关于C++递归函数的ppt课件,介绍了递归函数的概念、设计方法步骤、执行过程、递归与迭代、典型案例等内容。下面是对该资源的详细解释: 递归概念 递归函数是指通过函数或过程调用自身,将问题转化为本质相同但规模较小的子问题的方法。如果是直接调用自身,称为直接递归;如果是通过其它函数或过程间接调用自身,则称为间接递归。递归方法是算法和程序设计中的一种重要技术,是许多复杂算法的基础。 递归函数的特点 递归函数有三个特点: * 原始问题可转化为解决方法相同的新问题; * 新问题的规模比原始问题小; * 新问题又可转化为解决方法相同的规模更小的新问题,直至终结条件为止。 典型类型 递归函数有三种典型类型: * 问题定义是递归的,如阶乘的定义:n! = n × (n-1) × (n-2) × ... × 1。 * 数据结构是递归的,如链表的结点结构定义:struct node { int data; struct node *next; }。 * 问题求解过程是递归的,如折半查找算法。 设计方法步骤 设计递归函数需要遵循以下步骤: * 基本思想:将一个复杂问题分解成若干简单且相同的子问题。 * 递归算法所需条件:存在递归结束条件及结束时的值,能用递归形式表示,且递归向终止条件发展。 * 递归模型:递归模型是递归算法的抽象,反映递归问题的递归结构。 * 设计步骤:描述递归关系、确定递归出口、写出递归函数。 执行过程 递归函数的执行过程可以分为两个阶段: * 递归调用:函数调用自身,直至达到终结条件。 * 递归返回:函数返回结果,直至最终结果。 递归与迭代 递归函数和迭代函数是两种不同的程序设计方法。递归函数将问题转化为规模较小的子问题,而迭代函数使用循环来解决问题。 典型案例 本资源提供了两个典型案例: * 案例1:汉诺塔问题,通过递归函数解决汉诺塔问题。 * 案例2:麦粒问题,通过递归函数解决麦粒问题。 本资源提供了关于C++递归函数的详细介绍,包括递归概念、特点、典型类型、设计方法步骤、执行过程、递归与迭代、典型案例等内容,为学习C++递归函数提供了有价值的参考资料。
2024-10-28 16:24:29 443KB
1
在C# WinForm开发中,`TreeView`控件是一个常用且功能强大的组件,它用于展示层次结构的数据,比如文件系统、数据库结构或者自定义的对象结构。`TreeView`控件通过节点(TreeNode)来表示数据,每个节点可以有子节点,形成一个树状结构。在本例中,我们将探讨如何使用`TreeView`以及与之相关的递归算法。 1. **TreeView控件基本操作** - **添加节点**:可以通过`TreeView.Nodes.Add()`方法添加顶级节点,然后通过`TreeNode.Nodes.Add()`添加子节点。 - **显示图标**:每个节点可以设置图标,通过`TreeNode.ImageIndex`和`TreeNode.SelectedImageIndex`属性。 - **展开/折叠节点**:使用`TreeNode.Expand()`和`TreeNode.Collapse()`方法。 - **遍历节点**:可以通过`TreeView.Nodes`集合进行遍历,获取所有节点信息。 2. **递归算法与TreeView** - **递归加载数据**:在数据量大或结构复杂时,我们通常使用递归算法加载`TreeView`。例如,从数据库或XML文件中获取层次数据,然后逐级添加到`TreeView`中。递归函数会调用自身,每次处理一个节点并添加其子节点。 - **遍历树结构**:使用递归遍历`TreeView`中的所有节点,可以获取整个树的结构信息。从根节点开始,对每个节点执行操作,然后递归处理其子节点。 3. **递归函数示例** - 以下是一个简单的递归函数,用于将树形数据结构加载到`TreeView`中: ```csharp public void LoadTree(TreeNode node, List data) { foreach (var item in data) { TreeNode newNode = new TreeNode(item.Name); node.Nodes.Add(newNode); if (item.HasChildren) // 检查数据对象是否有子项 LoadTree(newNode, item.Children); // 递归调用,处理子项 } } ``` 这里的`MyDataObject`是表示层次数据的类,包含`Name`和`Children`属性。 4. **事件处理** - **节点点击事件**:`TreeView`控件有`AfterSelect`事件,当用户选择一个节点后触发,可以获取选中节点的信息。 - **节点展开/折叠事件**:`TreeView`提供了`BeforeExpand`和`BeforeCollapse`事件,可以在节点展开或折叠前执行相关操作。 5. **性能优化** - **异步加载**:为提高用户体验,可使用异步方法加载大量数据,防止UI线程阻塞。 - **虚拟化**:对于非常大的树,可以启用虚拟化以节省内存,只在节点可见时加载它们。 6. **自定义节点行为** - **拖放支持**:`TreeView`支持拖放操作,可以通过实现`DragDrop`和`DragEnter`等事件进行自定义。 - **右键菜单**:可以为`TreeView`添加右键菜单,通过`ContextMenuStrip`控件为不同节点提供不同的操作选项。 7. **扩展功能** - **搜索节点**:通过遍历所有节点,根据关键词查找特定节点。 - **保存和加载状态**:可以保存`TreeView`的状态(如展开/折叠状态、选中节点),以便在下次启动时恢复。 总结,`C# WinForm`中的`TreeView`控件是构建层级结构界面的强大工具。结合递归算法,我们可以高效地加载和操作复杂的树形数据。理解并熟练运用这些知识,能帮助开发者创建功能丰富的用户界面。
2024-09-20 14:11:23 20.36MB TreeView 递归算法
1
基于支持向量机递归特征消除(SVM_RFE)的分类特征选择算法,matlab代码,输出为选择的特征序号。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2024-06-14 18:29:26 118KB matlab 支持向量机
1
使用labview实现递归,版本2015 Fibonacci(斐波拉契)数列 f(0) = 1; f(1) = 1; .... n>1: f(n) = f(n-1) + f(n-2)
2024-05-31 13:38:38 8KB labview2015 递归
1
1. 根据某一文法编制递归下降分析程序,以便对任意输入的符号串进行分析。 2. 本次实验的目的是加深对递归下降分析法的理解。
2024-05-31 10:59:11 481KB 递归下降
1