了解所有级别的人工智能(AI)如何出现在最难以想象的普通生活场景中。本书探讨了诸如神经网络,代理,多代理系统,监督学习和无监督学习等主题。这些和其他主题将通过实际示例进行解决,因此您可以使用AI解决方案学习基本概念并将其应用于您自己的项目。 人们倾向于将人工智能视为神秘而与他们日常生活无关的东西。实用人工智能提供简单的解释和实施指示。本书不是专注于理论和过于科学的语言,而是使各级实践者不仅能够学习人工智能,还能实现其实际用途。
2025-06-20 09:57:30 9.16MB 人工智能
1
【智能手手套-项目开发】是一项利用先进科技帮助听力和语言障碍儿童的创新工程。这个项目的核心在于设计和实现一款能够识别并翻译手语的智能手套。通过将人工智能(AI)、家庭自动化、机器学习(Machine Learning)以及机器人技术(Robotics)等前沿技术融合,这款智能手套有望打破沟通障碍,让这些孩子能够更有效地学习和与人交流。 3D模型文件“smart_hand_glove_3d_model_gt3SG3iqaE.obj”是智能手手套的立体设计图,用于展示手套的外观结构和内部组件布局。3D建模在产品设计阶段至关重要,它可以帮助工程师们可视化设计,进行精确的尺寸调整和功能优化,确保手套在实际操作中的舒适度和功能性。 配合“smart-hand-glove-84e046.pdf”文件,这可能是一份详细的项目文档或用户手册,包含了手套的工作原理、技术规格、使用方法以及可能遇到的问题和解决方案。例如,它可能会详述如何通过嵌入的传感器来捕捉手部动作,这些传感器可能包括加速度计、陀螺仪和磁力计,它们共同作用于对手指关节的角度和运动轨迹进行精确跟踪。 在人工智能方面,手套可能运用了深度学习算法,如卷积神经网络(CNN)或循环神经网络(RNN),以学习和理解大量的手语数据。通过大量训练,模型可以识别出特定的手势,并将其转化为对应的语音或文字输出。这一过程涉及大量的数据处理和模式识别,使得手套能实时、准确地解码手语。 家庭自动化和机器人技术的应用可能体现在手套与智能设备的联动上。例如,手套可能连接到智能手机或智能家居系统,以便将手语翻译的结果通过语音助手读出,或者显示在屏幕上。同时,手套本身可能具备一定的自主性,如自动适应用户的使用习惯,或根据环境和情境调整翻译策略。 机器学习在手套的持续改进中起到关键作用。随着使用者的增加,手套可以通过在线学习不断优化其识别准确性,适应更多样的手语风格和个人差异。此外,可能还设有反馈机制,让用户报告错误,进一步提升模型的性能。 智能手手套项目结合了多种先进技术,旨在为有特殊需求的儿童提供一个便捷、高效的交流工具,从而促进他们的学习和社交活动。这个项目不仅展现了科技的温度,也为未来无障碍通信的发展提供了新的思路和实践案例。
2025-06-19 16:15:57 2.89MB artificial intelligence home automation
1
人工兔子优化算法(ARO, Artificial Rabbits Optimization)是一种新兴的全局优化算法,灵感来源于自然界中兔子的行为模式。在自然环境中,兔子具有优秀的生存和繁殖技巧,这些特性被巧妙地融入到算法的设计中,以解决复杂的多模态优化问题。 在MATLAB中实现ARO算法,首先要理解其基本原理。ARO算法包括两个主要阶段:探索和开发。探索阶段模拟了兔子寻找食物的过程,通过随机跳跃来扩大搜索范围;开发阶段则模仿兔子在已知领域内的挖掘行为,深入优化潜在的解决方案。 1. **探索阶段**: - 初始种群:算法开始时,创建一定数量的兔子代表解空间中的初始个体,每个兔子的位置表示一个可能的解决方案。 - 随机跳跃:每个兔子以一定的概率进行大范围的随机跳跃,增加搜索的全局性,避免早熟收敛。 2. **开发阶段**: - 挖掘行为:在已发现的较好区域,兔子会进行更精细化的搜索,即局部优化。这可以通过在当前最优解附近进行小范围的变异操作来实现。 - 社会学习:ARO算法还包含了兔子间的交互学习,优秀兔子的经验会被其他兔子借鉴,从而提升整体种群的适应度。 3. **适应度函数**: - 在MATLAB中,适应度函数用于评估每个解(兔子)的质量。它通常是根据具体优化问题的目标函数来定义的,目标是最大化或最小化某个目标值。 4. **迭代与终止条件**: - 算法会进行多代迭代,每一代都会执行探索和开发过程。迭代次数或达到预设的收敛标准(如连续几代适应度无明显提升)时,算法停止。 5. **MATLAB实现细节**: - 使用MATLAB的随机数生成函数来实现探索阶段的随机跳跃。 - 利用MATLAB的循环结构来控制迭代过程。 - 定义和调用适应度函数,计算每个解的适应度值。 - 实现社会学习机制,可以使用邻域搜索或者基于排名的选择策略。 - 保存并更新最优解,以及记录每代的性能指标。 6. **优势与局限**: - ARO算法具有良好的全局搜索能力和收敛速度,适用于多模态优化问题。 - 但是,参数选择和调整对算法性能有很大影响,需要经验积累。 - 缺乏理论上的收敛性证明,实际应用中可能需要多次试验来优化参数。 在实际应用中,使用MATLAB实现ARO算法通常涉及编写函数来定义优化问题,实现算法的核心逻辑,并设置合适的参数,如种群大小、迭代次数、学习率等。通过不断试验和调整,可以针对特定问题优化算法性能。"license.txt"文件可能是软件的许可协议,确保你在使用此算法时遵循相应的版权规定。
2025-05-20 19:19:19 8KB matlab
1
life 3.0,Life 3.0 discusses Artificial Intelligence (AI) and its impact on the future of life on Earth and beyond. The book discusses a variety of societal implications, what can be done to maximize the chances of a positive outcome, and potential futures for humanity, technology and combinations thereof.
2023-11-20 15:32:30 5.17MB book Engl
1
Packtpub 所出的以python来实作各种 AI算法,亚马逊评价五颗星。
2023-11-15 06:04:44 29.63MB Python Artificial
1
在本文中,我们开始创建自定义对象检测模型的过程。
1
人工智能英文PPT,十分详细 概述,无信息搜索,约束可满足问题,启发式搜索,整数编程, 推理,概率,贝叶斯网,信念网, 马可夫决策过程,强化学习,神经网络, 游戏与博弈,社会学习与决策,深度学习,机器视觉 本部分包括: 概述,无信息搜索,约束可满足问题,启发式搜索,整数编程
2023-10-12 20:43:57 13.81MB 人工智能
1
用于文档图像变形的门控和分叉堆叠式U-Net模块 捕获文档图像是记录它们的最简单,最常用的方法之一。 但是,这些图像是在手持设备的帮助下捕获的,通常会导致难以消除的不良失真。 我们提出了一个监督的门控和分叉堆叠式U-Net模块,以预测变形网格并从输入中创建无失真的图像。 在对网络进行人工合成的文档图像训练时,将根据真实世界的图像来计算结果。 我们方法的新颖性不仅存在于U-Net的分叉中,以帮助消除网格坐标的混合,而且还存在于使用门控网络的情况下,该门控网络为模型增加了边界和其他分钟线级别的细节。 我们提出的端到端流水线仅在先前方法中使用的数据的8%进行训练后,就可以在DocUNet数据集上实现最新的性能。 要求 所需的软件包: 火炬(> 1.4.0) 火炬视觉(> 0.6.0) numpy(> 1.18.4) 要安装所有必需的软件包,请使用pip install -r requir
1
After 60 years, Artificial Intelligence (AI) has now reached industry and the consciousness of the population. The impressive successes and new AI methods are now so relevant that they should be taught even in a basic course. In about 30 new pages, I report mainly on deep learning, a consistent further development of neural networks, which finally enables image processing systems to recognize almost any object in pixel images. Among other benefits, this lead to the first computer program that could beat one of the world’s best Go players.
2023-07-03 22:00:25 13.38MB artifi intell
1
Peter Novig的《Paradigms of artificial intelligence programming》
2023-07-03 21:50:33 17.52MB Lisp AI
1