§5.4 相控阵天线的方向性系数 平面阵列天线的方向性系数前面已经讨论过,只不过这里作了详细推导。 216
2023-04-23 15:56:27 4.01MB 阵列天线
1
§5.5 阵列天线中各单元之间的互耦影响 相控阵天线是由大量辐射单元组成的,单元之间的互耦效应将使阵列单元 馈电电路的反射增大,甚至出现盲区,使天线无法工作。 一个有限口径的相控阵,由于单元在阵列中的位置不同则受周围单元的互 耦影响就不同,互耦不仅影响单元的馈电电路中的反射,还将影响单元的方向 图。在前面的阵列辐射方向图分析中没有考虑阵列的互耦影响。 阵列中的某个单元仅受邻近的一些单元的互耦影响。互耦的大小除与距离 有关外还与单元的方向图、极化等有关。在相控阵天线的扫描过程中,随着波 束指向的变化,互耦影响也将变化,扫描角度愈大,互耦就愈严重。另一方面, 相控阵天线为了不出现栅瓣,往往使得单元间距较小而排列较紧密,互耦也必 然会增强。因此,在相控阵天线中互耦是不可忽略,且是在不断变化的。其后 果是:将引起单元阻抗失配;影响功率发射;阵列方向图畸变;以至出现扫描 盲区等等。 互耦是两个天线之间的能量相互耦合效应或电磁感应。由于单元具有较宽 的方向图,故不可能将能量集中在一个方向辐射,或只接收某一方向的入射波。 发射时,辐射能量将沿着方向图不为零的所有方向辐射,因此就有一部分能量 进入其它的单元方向图不为零的作用范围内而被接收,于是在这个单元上产生 感应电流而被再激励(寄生激励)。这个寄生激励的能量又以其固有的方向图辐射 出去,且其中的一部分又耦合回原来的单元中。同时,还有一部分进入到信号 源中,而产生反射引起失配。这种现象称为单元间的互耦影响。 如果波束扫描,则单元间的相位差随之变化。于是一个单元耦合到另一个 单元的能量也将改变,从而改变了互耦能量的强弱。能量耦合与单元方向图、 极化、阵列馈电网格形状等有关。单元方向图愈尖锐,互耦就愈弱,但是单元 方向图愈尖锐则阵列波束扫描范围愈窄。所以在单元方向图的选择上要全面考 217
2023-01-20 09:00:40 4.01MB 阵列天线
1
ADS2011射频电路设计与仿真实例
2022-06-08 19:02:52 81.93MB ADS2011射频电路设计与仿真
§2.5 用内插法综合阵列 利用内插法理论可以综合任意幅度和相位分布的等间距线阵,确定必要的激 励,给出综合的方向图与所要求的方向图之间的均方误差或 大误差。 给定一个方向图函数 ( )f θ ,如果指定了间距 d 和均匀递变相位α ,则其场 强方向图函数和功率方向图函数可分别表示成 ( )f u 和 ( )g y ,其中 cosu kd θ α= + , 2cosy u= 。综合的任务就是要找到一个方向图函数 ( )F u 或 ( )P y ,使其在给定的误差范围内尽可能地接近 ( )f u 和 ( )g y ,从而确定阵列单元 总数和所需的激励分布。根据均匀递变和非均匀递变相位两种情况,综合的功率 方向图可用下面式(2.85)和 (2.86)表示,并满足可实现条件。即 ■均匀递变相位的阵列(UPP) 1 0 ( ) 0 , 2 2 N m U m m P y A y y − = = ≥ − ≤ ≤∑ (2.85) ■非均匀递变相位的阵列(NUPP) 1 2 2 1/ 2 0 0 ( ) ( )(4 ) 0 , 2 2 N N m m NU m m m m P y A y A y y y − − = = ′ ′′= + − ≥ − ≤ ≤∑ ∑ (2.86) P(y)的项数及其系数是确定阵列单元数 N 和激励分布 nI 的依据。上面两式中 代入 2cosy u= ,则它们分别变为 ( ) 0 ( ) ( ) 0 e e o S u S u S u ≥ + ≥ kd u kdα α− + ≤ ≤ + (2.87) 式中, ( ), ( )e oS u S u 分别是 u 的偶函数和奇函数。 如果预给的方向图是 u 的偶函数,就可以用一个 UPP 阵列来实现 ( )UP y 。采 用一个多项式 ( )UP y 来逼近预给的任意函数 g(y),在理论上是由维尔斯特拉斯逼 近定理得到保证的。该定理指出: 若 g(y)在闭区间a y b≤ ≤ 内连续,且ε 是一个无论怎样小的正数,则总存在 一组系数 mA 和一个正整数 N 来构成一个多项式 1 0 ( ) N m U m m P y A y − = = ∑ (2.88) 对于变量 y,在所考虑区间内如下不等式成立。 | ( ) ( ) | ,UP u g y a y bε− < ≤ ≤ (2.89)
2022-05-09 16:11:56 4.01MB 阵列天线
1
§1.7 谢昆诺夫单位圆辅助分析阵列特性 39
2022-04-19 16:53:38 4.01MB 阵列天线
1
二、改变幅度和相位实现波束赋形 改变激励幅度和相位实现波束赋形与前面仅改变相位实现波束赋形其原理 和方法是相同的,只是激励幅度和相位均为需要确定的量。而且同样可采用“联 合应用 DFP 和 BFGS 公式的变度量算法”。与前面不同的只是目标函数的变量 不同,其变量不仅有激励相位 nα 而且包含激励幅度 nI 。此时的目标函数为 2 0 0 ( ) [| ( ) | | ( ) |] M i i i F S fθ θ = = −∑Iα (4.14) 式中, 0 1 2 1 0 1 2 1( , , , , , , , , , )NI I I I Nα α α α−=Iα − 。采用优化方法使得目标函数最小, 即求 * nI 和 ,使得 *, 0,1,2, ,n nα = −1N N * * * * * * * * * 0 1 2 1 0 1 2 1( ) min ( , , , , , , , , )NF F I I I I α α α α− −=Iα (4.15) 所采用的优化方法需要计算如下梯度向量 0 1 2 2 1( ) ( , , , , )Ng g g g −=g Iα (4.16) 式中 ( ) , 0,1,2, , 1 ( ) , , 1, 2, , 2 n n n N F n N I g F n N N N N α − ∂⎧ = −⎪ ∂⎪ = ⎨ ∂⎪ = + + − ⎪ ∂⎩ Iα Iα 1 (4.17) 剃度向量中的元素包含目标函数 对激励幅度( )F Iα nI 和 nα 的微分。 ■对 nI 的偏导 194
2022-03-17 16:08:11 4.01MB 阵列天线
1
ADS2011射频电路设计与仿真实例.pdf
2022-03-17 09:16:38 106.58MB
1
本书主要介绍使用ADS2011进行射频电路设计与仿真方法,书中包含大量工程实例,包括匹配电路﹑滤波器﹑噪声放大器﹑功率放放大器﹑混频器﹑锁相环﹑功分器﹑耦合器﹑射频控制电路﹑RFIC集成放大器电路﹑TDR电路﹑通信系统,矩量法Momentum电磁场仿真,微带天线等仿真实例,涵盖大部分无线收发电路,系统性强,工程实用性强。
2021-12-06 15:05:49 81.93MB ADS2011
1
射频电路设计入门知识,软件工具ADS2011学习
2021-05-18 11:24:57 106.67MB ADS2011 射频电路设计 仿真实例
1
学习ADS的最经典教材书,非常详细,对理解射频电路有非常大的帮助
2021-04-10 00:30:59 106.03MB ADS
1