FDTD(时域有限差分)仿真模型的建立及其在光子器件设计中的应用,重点探讨了逆向设计中的多种算法,如二进制算法、遗传算法、粒子群算法和梯度算法。首先,文章解释了FDTD的基本原理,包括仿真区域和边界条件的确定、网格划分、初始条件设定以及麦克斯韦方程的求解步骤。接着,阐述了逆向设计的概念及其在光子器件优化中的重要性,并具体介绍了四种算法的工作机制。最后,展示了这些技术和算法在实际光子器件(如分束器、波分复用器、二极管、模式滤波器、模分复用器等)的设计与仿真中的应用实例。 适合人群:从事光子学研究的技术人员、高校相关专业师生、对光子器件设计感兴趣的科研工作者。 使用场景及目标:适用于希望深入了解FDTD仿真技术及逆向设计算法的研究人员,旨在提高光子器件的设计效率和性能优化能力。 其他说明:文中不仅提供了理论背景,还结合了具体的案例分析,有助于读者更好地理解和掌握相关技术的实际应用。
2025-11-01 21:30:11 254KB FDTD 遗传算法 粒子群算法 逆向设计
1
交叉概率 pc和变异概率 pm在整个进化进程中保持不变,是导致算法性能下降的重要原因。 为了提高算法的性能,文章提出了自适应交叉概率公式和自适应变异概率公式,并在非线性排序选择情 况下,证明了所提出的自适应交叉和自适应变异概率公式是收敛到全局最优解的。
2025-10-30 14:29:13 533KB 自然科学 论文
1
遗传算法是一种模拟自然选择和遗传学原理的优化技术,它在解决复杂的函数优化问题中具有广泛应用。MATLAB作为一款强大的数值计算和数据可视化工具,提供了实现遗传算法的便捷平台。本篇文章将深入探讨如何在MATLAB中应用遗传算法进行函数优化,并通过分析“简单函数优化的遗传算法程序”这一实例来阐述相关知识点。 遗传算法的基本流程包括初始化种群、选择、交叉和变异等步骤。在MATLAB中,我们可以自定义这些操作,或者利用内置的Global Optimization Toolbox中的ga函数来简化实现。 1. 初始化种群:在MATLAB中,我们需要定义一个随机初始种群,这个种群由多个解决方案(个体)组成,每个个体都是一个可能的解向量。例如,可以使用rand函数生成在一定范围内的随机数来表示这些解。 2. 适应度函数:遗传算法的目标是寻找使适应度函数值最大的解。适应度函数通常为需要优化的函数,如目标函数或成本函数。在MATLAB中,我们需定义这个函数,并将其作为ga函数的一个参数。 3. 选择操作:选择是根据适应度函数值来保留优秀个体的过程。MATLAB的ga函数使用了多种选择策略,如轮盘赌选择、锦标赛选择等,它们可以根据适应度比例或排名来决定个体的生存概率。 4. 交叉操作:交叉操作(Crossover)模拟了生物的基因重组,使得优秀特征得以传递到下一代。MATLAB支持单点、多点、均匀等多种交叉方式,通过设置ga函数的CrossoverFcn参数来选择。 5. 变异操作:变异操作(Mutation)是为了增加种群的多样性,防止早熟。MATLAB提供了一定的概率来对个体的部分或全部基因进行变异,通过MutationFcn参数设定。 6. 停止条件:遗传算法通常会运行一定的代数或者达到特定的精度要求。MATLAB的ga函数可以通过设置MaxGenerations和TolFun等参数来设定停止条件。 在“简单函数优化的遗传算法程序”实例中,我们可能会看到如何定义适应度函数、设置种群大小、选择和交叉策略、变异概率以及终止条件等关键部分。同时,代码中还可能包含了结果的可视化和分析,以帮助理解算法的性能和优化过程。 通过理解和掌握上述知识点,开发者能够在MATLAB中灵活地应用遗传算法解决各种函数优化问题。遗传算法的强大之处在于其全局搜索能力,尤其适合于多模态、非线性或高维度的优化问题。然而,合理设置参数和优化算法细节对于获得高效且准确的解至关重要。因此,在实际应用中,需要根据问题的特性和需求进行适当的调整和试验。
2025-10-29 15:30:03 5KB 遗传算法 matlab
1
"基于遗传算法与蚁群算法的多配送中心车辆路径优化研究:可调整配送中心数目与车辆载重率的MATLAB代码实现",遗传算法多配送中心车辆路径优化,蚁群算法多配送中心车辆路径优化,多个配送中心,多中心配送mdvrptw.带时间窗的多配送中心车辆路径优化。 可修改配送中心数目。 多配送中心车辆路径 [1]多配送中心[2]带有车辆载重率的计算[3]matlab代码数据可及时修改。 ,遗传算法; 蚁群算法; 多配送中心; 车辆路径优化; 时间窗; 载重率计算; MATLAB代码。,多中心车辆路径优化:考虑时间窗与载重率计算
2025-10-28 17:59:08 1.08MB
1
内容概要:本文探讨了卡车联合无人机配送路径规划问题,特别是基于FSTSP(固定起点旅行商问题)和D2TSP(双重旅行商问题)的遗传算法解决方案及其Matlab代码实现。文中详细介绍了卡车与两架无人机协同工作的具体流程,包括无人机的起降时间点和服务点分配方案。通过遗传算法优化路径规划,考虑了卡车油耗、无人机能耗以及时间窗口惩罚等因素,最终实现了最低成本的路径规划。此外,还讨论了算法中的基因结构设计、适应度函数、交叉算子和可视化展示等方面的技术细节。 适合人群:对物流配送系统优化感兴趣的科研人员、算法开发者及物流行业从业者。 使用场景及目标:适用于需要优化多模态运输系统的场景,如城市内的紧急物资配送、商业区货物派送等。目标是通过合理的路径规划,减少运输成本并提高配送效率。 其他说明:文中提到的遗传算法参数调整对于获得更好的解质量至关重要,同时也强调了实际应用中可能遇到的问题及解决方案,如单行道处理和无人机续航管理等。
2025-10-26 13:11:48 534KB
1
内容概要:本文详细探讨了卡车联合无人机配送路径规划问题,特别是基于FSTSP(固定起点旅行商问题)和D2TSP(双重旅行商问题)的遗传算法解决方案及其Matlab代码实现。文中介绍了卡车与两架无人机协同工作的具体机制,包括无人机的起降时间点和服务点分配方案。通过遗传算法优化路径规划,考虑了卡车油耗、无人机能耗以及时间窗口惩罚等因素,最终实现了最低成本的路径规划。此外,还讨论了交叉算子、变异概率等参数对算法性能的影响,并展示了路径可视化的实际效果。 适合人群:对物流配送系统优化感兴趣的科研人员、算法开发者及物流行业从业者。 使用场景及目标:适用于需要优化多模态运输系统的场景,如城市内的紧急物资配送、商业区货物派送等。目标是通过遗传算法提高配送效率,降低成本,确保无人机和卡车的最佳协作。 其他说明:文章不仅提供了详细的理论背景和技术实现方法,还包括了具体的代码片段和参数调整技巧,有助于读者深入理解和应用该算法。
2025-10-26 13:11:25 418KB
1
内容概要:本文探讨了如何使用遗传算法优化编码序列,以实现超表面雷达横截面(RCS)的缩减和最佳漫反射效果。文中详细介绍了遗传算法的基本原理及其在编码序列优化中的应用,分别用MATLAB和Python实现了优化过程,并展示了三维仿真结果和二维能量图。同时,文章还讲解了如何在CST软件中观察超表面的RCS缩减效果,以及考虑了容差性设计和远场波形观察,确保优化后的编码序列能够在实际应用中表现出色。 适合人群:从事雷达与天线设计的研究人员和技术人员,尤其是对遗传算法和超表面技术感兴趣的读者。 使用场景及目标:适用于需要降低雷达横截面的应用场景,如军事隐身技术和民用通信设备。目标是通过优化编码序列,实现超表面的最佳RCS缩减和漫反射效果。 其他说明:本文不仅提供了详细的理论背景,还包括具体的实现步骤和代码示例,帮助读者更好地理解和应用遗传算法优化编码序列的技术。
2025-10-25 17:58:27 833KB
1
遗传算法在编码超表面RCS(雷达散射截面)缩减中的应用及其最佳漫反射效果的实现方法。文中阐述了遗传算法的基本原理,即通过选择、交叉和变异等操作来优化编码序列,从而使得超表面在雷达波照射下达到最佳漫反射效果。同时,提供了MATLAB和Python两种编程环境的具体实现步骤,包括定义问题、初始化种群、选择操作、交叉操作、变异操作以及评估函数等。此外,还展示了三维仿真结果和二维能量图,帮助理解优化效果,并介绍了如何在CST电磁仿真软件中验证超表面的RCS缩减效果。最后指出遗传算法的优点在于快速出结果、容差性高,适用于不同尺寸的编码序列优化。 适合人群:对电磁学、天线设计、雷达隐身等领域感兴趣的科研人员和技术开发者,尤其是熟悉MATLAB和Python编程的人士。 使用场景及目标:①研究编码超表面在天线、雷达隐身等方面的应用;②利用遗传算法优化编码序列,提高超表面的RCS缩减性能;③掌握MATLAB和Python环境下遗传算法的具体实现方法;④通过仿真软件验证优化效果。 其他说明:本文不仅提供理论指导,还附带详细的编程实现步骤和仿真结果,有助于读者深入理解和实践遗传算法在超表面RCS缩减中的应用。
2025-10-25 17:57:13 918KB
1
内容概要:本文详细介绍了如何使用遗传算法优化编码序列来实现编码超表面的雷达截面(RCS)缩减,从而达到天线和雷达隐身的效果。文中提供了MATLAB和Python两种编程语言的具体实现代码,涵盖了从参数设置、种群初始化、适应度计算、选择、交叉、变异到最后获得最佳编码序列的完整流程。此外,还展示了如何通过三维仿真和二维能量图来呈现优化结果,并解释了在CST软件中验证超表面RCS缩减效果的方法。 适合人群:从事电磁学、天线设计、雷达技术和信号处理的研究人员和技术人员,尤其是对遗传算法及其应用感兴趣的科研工作者。 使用场景及目标:适用于需要降低雷达截面的应用场合,如军事装备隐身、民用通信设备抗干扰等。目标是通过优化编码序列,使超表面能够在特定频段内有效减少被探测的可能性,提高系统的隐蔽性和安全性。 其他说明:文中不仅提供了详细的代码实现步骤,还包括了对遗传算法原理的简要介绍,帮助读者更好地理解和应用该技术。同时,通过具体的案例演示,使得理论与实践相结合,便于读者掌握和应用。
2025-10-25 17:56:21 1.12MB
1
在现代通信领域,阵列天线凭借其优异的性能被广泛应用于多种场景。本设计利用MATLAB编程,采用遗传算法对16元阵列天线进行优化设计,目标是实现副瓣电平低于-30dB且增益高于11dB的性能指标。 遗传算法是基于达尔文自然选择理论的一种优化算法,模拟生物进化过程,通过选择、交叉和变异等操作逐步优化问题解。其基本原理是:初始种群由编码的个体组成,每个个体代表一个潜在解。在每一代中,根据个体的适应度进行选择、交叉和变异操作。适应度高的个体更有可能被选中进入下一代,同时通过变异操作保留一定的种群多样性,防止算法过早收敛。选择操作采用轮盘赌策略,交叉操作通过随机配对个体并交换基因片段生成新个体,变异操作则以一定概率改变个体基因。 在本设计中,16元均匀直线阵的阵元间距为半波长,其辐射场特性由阵因子决定,而阵因子与阵元间的相位差密切相关。目标函数的设计旨在通过优化阵元的相位差,使天线的增益和副瓣电平满足设计要求。MATLAB源代码中,初始化了种群规模、选择概率、交叉概率、变异概率以及信号频率等参数,生成初始种群后,通过迭代优化逐步调整阵元相位差,最终达到优化目标。 仿真结果以增益方向图的形式展示,直观呈现了优化后的天线性能。通过分析增益和副瓣电平,验证了遗传算法在天线优化中的有效性,优化后的天线性能满足设计指标。本设计参考了遗传算法、阵列天线理论以及MATLAB编程的相关文献,为实际工程应用提供了有价值的参考。
2025-10-25 17:49:24 56KB 遗传算法 天线优化
1