最新版本-西南交通大学-云计算与并行技术-戴林朋-作业1
2025-10-08 21:50:10 11.98MB Hadoop HDFS MapReduce
1
Hadoop官方不提供64位编译版,在此提供编译结果分享给大家 编译环境:Ubuntu14.04 测试环境:Ubuntu14.04 使用说明: 1.完整下载3个文件包:(上传大小限制,抱歉) hadoop-2.4.0-amd64.z01 hadoop-2.4.0-amd64.z02 hadoop-2.4.0-amd64.zip 2.解压获得文件包: hadoop-2.4.0-amd64.tar.gz 3.在服务器上部署使用
2025-10-05 19:18:10 18.56MB Hadoop
1
解决:Unable to load native-hadoop library for your platform 问题 原因: Apache提供的hadoop本地库是32位的,而在64位的服务器上就会有问题,因此需要自己编译64位的版本。 将准备好的64位的lib包解压到已经安装好的hadoop安装目录的lib/native 和 lib目录下:
2025-10-05 18:52:45 951KB
1
Hadoop、Hive、Spark 实验 本实验报告主要介绍了 Hadoop、Hive、Spark 等大数据技术的应用和实践。实验中,学生需要使用 Hadoop、Hive、Spark 等环境,完成大数据开发和分析,并对拍卖成功率进行预测。 知识点: 1. Hadoop 伪分布安装部署:在 Centos 7.5 系统上安装 Hadoop 2.7.3,并配置免密钥登陆和主机名映射。 2. Hadoop 完全分布式安装部署:在多台机器上安装 Hadoop,实现分布式存储和计算。 3. Hadoop 常用命令:学习 Hadoop 的基本命令,例如启动 Hadoop 集群、查看相关进程、查看 HDFS 上文件目录、递归列出目录及文件、删除文件等。 4. HDFS:学习 HDFS 的基本概念和 API 使用,例如使用 IOUtils 方式读取文件、文件创建与写入等。 5. MapReduce 编程:学习 MapReduce 编程模型,例如单词计数、数据过滤及保存等。 6. Hive 环境搭建:学习 Hive 的基本概念和使用,例如创建 Hive 表、加载数据、执行查询等。 7. Spark 环境搭建:学习 Spark 的基本概念和使用,例如创建 Spark 程序、加载数据、执行查询等。 8. 逻辑回归和决策树预测:学习逻辑回归和决策树算法,用于预测拍卖成功率。 实验设备和环境: * 虚拟机数量:1 * 系统版本:Centos 7.5 * Hadoop 版本:Apache Hadoop 2.7.3 * Hive 版本:未指定 * Spark 版本:未指定 实验步骤: 1. 安装 Javajdk 1.8.0_131,并测试版本 2. 增加主机名和 ip 的映射 3. 配置免密钥登陆 4. 启动 Hadoop 集群,并查看节点(进程) 5. 运行 PI 实例,并查看结果 6. 实现 Hadoop 伪分布安装部署 7. 实现 Hadoop 完全分布式安装部署 8. 实现 HDFS 的基本操作,例如文件创建与写入、文件上传下载等 9. 实现 MapReduce 编程,例如单词计数、数据过滤及保存等 10. 实现 Hive 环境搭建和使用 11. 实现 Spark 环境搭建和使用 12. 实现逻辑回归和决策树预测拍卖成功率 本实验报告介绍了 Hadoop、Hive、Spark 等大数据技术的应用和实践,涉及到大数据开发、存储、计算和分析等多个方面。
2025-09-25 14:09:25 5.43MB hive hadoop spark 数据仓库
1
毕设课设-基于Hadoop的视频收视率分析,毕设项目-功能比较多-都注释了
2025-09-02 10:47:21 1.6MB Hadoop 毕设项目
1
《高清版 Hadoop 权威指南_第4版》是一本深入探讨Hadoop技术的中文著作,旨在为读者提供全面、详细的Hadoop知识体系。Hadoop作为开源的大数据处理框架,已经成为大数据领域的核心工具,其分布式计算能力以及对大规模数据处理的高效支持,使其在业界广受欢迎。 该书详细讲解了Hadoop的起源、设计理念和架构,让读者理解Hadoop是如何应对海量数据挑战的。书中介绍了Hadoop的基本概念,包括Hadoop的两大核心组件——HDFS(Hadoop Distributed File System)和MapReduce。HDFS是Hadoop的数据存储系统,它通过分布式的方式存储大量数据,确保高可用性和容错性。MapReduce则负责数据的处理,通过分而治之的策略,将复杂计算任务拆解为大量小任务并行执行,极大地提升了处理效率。 书中还深入探讨了Hadoop的生态系统,包括YARN(Yet Another Resource Negotiator)资源管理器,它取代了早期版本中的JobTracker,提高了资源调度的灵活性和效率;HBase,一个基于Hadoop的分布式列式数据库,适合实时查询和大数据分析;以及Hive,一个数据仓库工具,允许用户使用SQL语言查询Hadoop集群中的数据。 此外,本书还涵盖了Hadoop的安装、配置和运维,帮助读者在实际环境中部署和管理Hadoop集群。读者将学习到如何优化Hadoop集群的性能,包括调整参数、监控系统状态以及故障排查等技巧。 对于数据处理,书中不仅讲解了基本的MapReduce编程模型,还介绍了更高级的处理框架,如Pig和Spark。Pig提供了一种高级语言来抽象MapReduce任务,简化开发过程,而Spark则是新一代的快速数据处理引擎,提供内存计算功能,显著提高了数据处理速度。 在数据分析部分,书中提到了使用Hadoop与NoSQL数据库(如Cassandra和MongoDB)的集成,以及如何利用Hadoop进行机器学习和大数据分析。这些内容对于希望在大数据领域进行深度挖掘和智能应用的读者来说非常宝贵。 书中还涉及到了Hadoop的安全性和扩展性,包括权限管理、身份验证和加密机制,以及如何通过添加新的组件和服务来扩展Hadoop的功能。 《高清版 Hadoop 权威指南_第4版》是一本覆盖全面、内容深入的Hadoop学习资料,无论你是初学者还是有经验的开发者,都能从中受益。通过阅读这本书,你将能够掌握Hadoop的核心原理,提升在大数据领域的专业技能,从而更好地利用Hadoop解决实际问题。
2025-08-25 20:43:17 184.37MB hadoop
1
整套大数据课程从hadoop入门开始,由浅入深,内置“hadoop源码解析与企业应用开发实战”,“Hive开发实战”,“Hbase开发实战”,“Spark,mahout,sqoop,storm诸模块开发实战”,“数据挖掘基础。这个系列课程有几个板块组成,所以学员可以按照自己的实际情况选择学习。例如,对于只需要了解hadoop基本编程的人,只需要选择“hadoop源码解析与企业应用开发实战”模块就可以了;对于立志于从事大数据领域的零起点人员,可以选择四个板块依次学习;对于已经有一定基础的hadoop开发人员,你可以根据自己的情况,选择学习模块,而不必4个板块从头开始学。 特点1:真正做到从0开始,从入门到精通 特点2:适合不同基础的学员学习 特点3:阶梯式课程,每个阶段都有明确的主题和目标 第1周 数据分析基础 要点 数据分析流程、方法论(PEST、5W2H、逻辑树)、基础数据分析方法、数据分析师能力层级、数据的度量、探索、抽样、原理及实际操作,结合SPSS工具使用 第2周 数据挖掘基础 要点(数据挖掘概念、流程、重要环节、基础数据处理方法(缺失值、极值)、关联性分析方法(相关分析、方差分析、卡方分析)、原理及实际操作 第3周 数据挖掘工具介绍及Modeler软件使用 要点 使用Modeler,实际数据操作,为后续课程准备) 第4周 挖掘-分类 要点(决策树 C5.0、逻辑回归,最常用的二种算法,原理及实际建模操作) 第5周 挖掘-聚类 要点(层次聚类、kmeans)、挖掘-关联(Apriori),挖掘-预测(线性回归,指数平滑,移动平均), 原理及实际建模操作 第6周 数据挖掘实战 要点(以目标客户挖掘为例,从业务分析、方案制定、数据处理、数据准备、变量筛选、建模、评测、部署各个环节,使用Modeler工具,讲述建模的全过程)
2025-08-23 11:13:30 74B Hadoop 数据挖掘
1
Spark 3.3.3是Apache Spark的一个重要版本,它是一个快速、通用且可扩展的大数据处理框架。这个版本特别针对Hadoop 3.x进行了优化,使得它能够充分利用Hadoop生态系统中的新特性和性能改进。在本文中,我们将深入探讨Spark 3.3.3与Hadoop 3.x的集成,以及它们在大数据处理领域的关键知识点。 Spark的核心特性包括其内存计算能力,这极大地提高了数据处理速度。Spark的RDD(弹性分布式数据集)是其基础抽象,它提供了一种高效的、容错的数据存储和计算模型。在Spark 3.3.3中,对RDD的优化和性能提升使得大规模数据处理更加高效。 Spark SQL是Spark处理结构化数据的重要组件,它允许用户使用SQL查询语言进行数据处理,并与多种数据源如Hive、Parquet、JSON等无缝集成。在Spark 3.3.3中,SQL性能得到了显著提升,查询计划优化器也更加智能,能生成更高效的执行计划。 再者,Spark Streaming提供了实时数据处理能力,它可以处理来自各种数据源的连续数据流。在Spark 3.3.3中,对DStream(离散化流)的处理更加强大,支持更多的窗口操作和复杂的流处理逻辑,增强了系统的可靠性和容错性。 此外,MLlib是Spark的机器学习库,包含多种机器学习算法,如分类、回归、聚类和协同过滤等。在Spark 3.3.3中,MLlib进一步完善了模型解释性,优化了算法性能,并增加了对最新机器学习研究的支持。 与Hadoop 3.x的集成是Spark 3.3.3的一大亮点。Hadoop 3.x引入了YARN(Yet Another Resource Negotiator)资源调度器的增强,提供了更细粒度的资源管理,提升了集群的利用率。Spark可以直接在YARN上运行,利用其资源管理功能。同时,Hadoop 3.x的HDFS(Hadoop Distributed File System)增强了存储能力,如支持大文件块和多命名空间,这对大数据处理的性能和灵活性都有积极影响。 在Spark 3.3.3中,对Hadoop 3.x的支持还包括与HDFS的兼容性增强,如支持HDFS的Erasure Coding,这是一种提高数据冗余和恢复效率的方法。另外,Spark还能够利用Hadoop 3.x的MapReduce改进,如更高效的 Shuffle 操作,从而提升整体处理性能。 总结来说,Spark 3.3.3与Hadoop 3.x的结合提供了强大的大数据处理平台,涵盖了数据处理、实时流处理、机器学习和存储管理等多个方面。这个版本的优化和新特性使得开发者能够更高效地处理大规模数据,同时享受到Hadoop 3.x带来的集群管理和存储性能提升。对于需要处理海量数据的企业和研究机构而言,Spark 3.3.3是一个理想的工具选择。
2025-08-18 05:26:50 285.56MB spark Hadoop
1
hadoop-eclipse-plugin-2.7.2.jar,编译环境win10-64,ant-1.9.6,eclipse-4.5.2(4.5.0可用,其他未测),hadoop-2.7.2
2025-07-18 09:40:25 31.88MB hadoop eclipse plugin hadoop-2.7.2
1
项目工程资源经过严格测试可直接运行成功且功能正常的情况才上传,可轻松copy复刻,拿到资料包后可轻松复现出一样的项目,本人系统开发经验充足(全栈开发),有任何使用问题欢迎随时与我联系,我会及时为您解惑,提供帮助 【资源内容】:项目具体内容可查看/点击本页面下方的*资源详情*,包含完整源码+工程文件+说明(若有)等。【若无VIP,此资源可私信获取】 【本人专注IT领域】:有任何使用问题欢迎随时与我联系,我会及时解答,第一时间为您提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 【适合场景】:相关项目设计中,皆可应用在项目开发、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面中 可借鉴此优质项目实现复刻,也可基于此项目来扩展开发出更多功能 #注 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担 2. 部分字体及插图等来自网络,若是侵权请联系删除,本人不对所涉及的版权问题或内容负法律责任。收取的费用仅用于整理和收集资料耗费时间的酬劳 3. 积分资源不提供使用问题指导/解答
2025-06-26 05:04:31 9.07MB
1