Hadoop集群完整搭建,直接跳过部署Hadoop集群
2025-04-24 08:46:33 233B hadoop
1
一.实验内容 Hadoop安装使用: 1)在PC机上以伪分布式模式安装Hadoop; 2)访问Web界面查看Hadoop信息。 二.实验目的 1、熟悉Hadoop的安装流程。 2、熟悉Hadoop访问Web界等基本操作。 ### Hadoop安装及使用知识点详解 #### 一、实验内容概览 本次实验的主要目标是掌握Hadoop在PC机上的安装及使用方法,具体包括: 1. **伪分布式模式下的Hadoop安装**:通过在一台PC机上模拟多台机器的行为来搭建Hadoop集群。 2. **Web界面访问**:安装完成后,通过Web界面监控和管理Hadoop集群的状态。 #### 二、实验目的 1. **熟悉Hadoop安装流程**:从环境准备、软件安装到配置调试,全面了解Hadoop部署的全过程。 2. **掌握基本操作**:学会如何通过Web界面等工具进行集群状态监控和管理。 #### 三、实验过程知识点详解 1. **SSH无密码登录配置**: - **生成SSH密钥对**:使用`ssh-keygen -t rsa`命令生成一对RSA类型的公钥和私钥。这一步骤是为了后续能在没有密码的情况下实现SSH登录。 - **添加公钥至authorized_keys文件**:将生成的公钥文件内容追加到`.ssh/authorized_keys`文件中,实现SSH免密码登录。 2. **Java环境配置**: - **JDK安装**:首先下载JDK压缩包,并将其解压到指定目录。 - **配置环境变量**:通过编辑`~/.bashrc`文件,设置JAVA_HOME等环境变量,并使用`source ~/.bashrc`命令使更改立即生效。 3. **Hadoop的安装与配置**: - **Hadoop安装**:从官方网站下载Hadoop压缩包,并将其解压到`/usr/local`目录下。 - **配置核心文件**:编辑`core-site.xml`、`hdfs-site.xml`、`mapred-site.xml`和`yarn-site.xml`四个配置文件,设置Hadoop的关键参数。 - **格式化HDFS**:使用`hdfs namenode -format`命令格式化Hadoop的NameNode,这是启动集群前的必要步骤。 - **启动Hadoop集群**:通过执行`start-dfs.sh`和`start-yarn.sh`脚本启动Hadoop服务,可通过`jps`命令查看是否成功启动NameNode、DataNode以及SecondaryNameNode进程。 4. **Web界面访问**: - **查看集群状态**:通过浏览器访问`http://localhost:9870`来查看Hadoop集群的Web界面,可以监控集群的状态和性能指标。 #### 四、实验总结及心得体会 **实验总结**: - **虚拟机搭建**:使用virtualBox创建多个虚拟机,模拟多台服务器的环境。 - **JDK安装**:在每个虚拟机上安装JDK,为Hadoop提供必要的运行环境。 - **Hadoop配置**:通过编辑配置文件,完成Hadoop集群的部署和启动。 - **功能测试**:通过简单的程序验证集群的功能性,确认数据能在各节点间正常传输和处理。 **心得体会**: - **虚拟机技术**:熟练掌握了virtualBox等虚拟机软件的使用,提高了在虚拟环境中搭建分布式系统的技能。 - **Hadoop安装过程**:深入了解了Hadoop的安装流程,包括在不同操作系统上的安装配置技巧。 - **分布式系统架构**:通过实验加深了对Hadoop分布式平台架构和组件的理解,为后续大数据项目的实施积累了宝贵经验。 - **Linux技能提升**:在实验过程中,通过编写和执行Shell脚本来管理集群,提高了Linux命令行操作的能力。 - **大数据处理**:对大数据处理有了更深刻的认识,了解了Hadoop在大数据处理中的作用及其发展前景。 通过本次实验,不仅提升了个人技能和理论知识,也为未来的职业发展打下了坚实的基础。
2025-04-22 00:11:37 497KB hadoop
1
3.1 需求分析 需求分析是任何一个项目开发过程中的一个决定性环节,一份完整好的需求分 析,开发者可以准确的熟悉整个软件或者系统的功能,要求,设计条件等具体要求, 进而确定项目要去完成的具体模块。需求分析对整个开发国政具有决定性,是项目 做好,高质的重要保证。 3.1.1 开发背景及目标 本文的数据来源于校园区域内学生上网搜狗搜索日志,每条日志通常都代表一 个学生的访问行为,本位所使用的数据是搜狗一天内的 500 万条搜索日志记录,其 格式为:访问时间,用户 ID,查询词,该 URL 在返回结果中的排名,点击顺序号, 点击 URl。 其中用户 ID 是根据用户使用浏览器访问搜索引擎的自动复制,同一次使用浏 览器输入的不同查询词对应于同一 ID。五条用户查询记录如表 3.1 所示: 表 3.1 用户查询记录 访问时间 用户 ID 查询词 返回结果 排名 点击顺 序号 点击 URL 2011123000 0005 f31f594bd1f31472 98bd952ba35de84d 傲视千雄 3 1 http://web. 4399.com 2011123000 0017 2ebbc38bf56753b0 9c945de813a443c3 人在囧途 2 1 http://tv.s ogou.com 2011123000 0020 072fa3643c91b29b d586aff29b402161 12306.cn 1 1 http://www. 12306.cn 2011123000 0016 16c3b69cc93e838f 89895b49643cef1d 王小丫 6 1 http://www. 94caobi.com 2011123000 0018 3d1acc7235374d53 1de1ca885df5e711 满江红 2 2 http://www. baidu.com 从上面的这几条日志中,我们可以得到很多有价值的信息,例如搜索者的 ID、 访问的时间、查询的关键词、点击的 URL 等。 毫无疑问,搜狗搜索日志中包含了
2025-04-21 00:22:28 1.58MB hadoop 上网行为分析 搜索日志
1
hadoop-docker 前言 本项目使用docker-compose在单机上快速构建hadoop进行,方便基于hadoop的开发与测试。 快速启动 1.准备 本地需要提前安装 && 2.创建 hadoop容器将分为主机和从属两个类型,其中master容器中运行namenode和ResourceManager,slave容器中运行datanode和NodeManager。 容器将在../hdfs_data位置存储namenode和datanode hadoop-master容器配置参数 namenode文件夹地址: /root/hdfs/namenode 环境 IMAGE_ROLE 容器类型为从属容器,当IMAGE_ROLE标记为master表示此容器为master容器,根据此标记容器启动时自动执行格式namenod && start-dfs && start-yarn等命令 奴
2025-04-19 11:18:32 45KB Shell
1
本资源为燕山大学大数据三级项目,包括项目报告(英文版)和源码(可直接在虚拟机上运行),实现了新闻聚类和新闻分类。利用hadoop、spark和scala。其中有参考文件为如何在虚拟机上将scala文件提交到spark中 ;源码test.scala实现了新闻聚类,里面有分词(需要安装两个jar包),特征提取,利用kmeans聚类。output.libsvm为老师给的数据集的特征提取,就是spark官网上的代码总是读取libsvm,利用这个可直接读取,进行分类;分类有朴素贝叶斯和逻辑回归其中朴素贝叶斯准确率较高,逻辑回归准确率较低。navie为朴素贝叶斯源码,classify为逻辑回归源码。
2025-04-19 00:01:48 2.82MB 聚类 hadoop spark scala
1
本资源为燕山大学大数据实验报告,包括四个实验hadoop和spark下载,使用mllib实现线性回归算法,使用mllib实现支持向量机算法,使用mllib实现支持k-means算法。其中支持向量机算法求解了recall,precision,f1-score和accracy来实现算法评估。 ### 大数据分析实验报告知识点概览 #### 实验一:Hadoop与Spark环境构建及应用开发 ##### 实验目的与要求 本实验旨在使学生掌握Hadoop与Spark环境的搭建方法,并能正确启动Spark服务流程,进而实现Spark应用程序并确保其正常运行。 1. **Hadoop与Spark环境构建**: - 要求学生能够独立完成Hadoop与Spark环境的安装配置。 - 学生需具备启动Hadoop与Spark服务的能力。 2. **Spark应用开发**: - 学生应能够编写并运行简单的Spark应用程序。 - 通过实践加深对Spark工作原理的理解。 ##### 实验环境与软件配置 - **虚拟机平台**:VMware Workstation Pro 16 - **操作系统**:Ubuntu 14.04 Server (AMD64) - **JDK版本**:1.8 - **Scala版本**:2.12.6 - **Hadoop版本**:2.7.7 - **Spark版本**:2.4.4 (含Hadoop 2.7) ##### 实验内容 - 在Linux系统或虚拟机上安装配置Hadoop与Spark环境,并启动相应的守护进程。 - 使用Spark实现WordCount程序的开发与运行。 1. **数据准备**: - 输入数据:`input.txt` 2. **代码实现**: ```scala import org.apache.spark.SparkConf import org.apache.spark.SparkContext import org.apache.log4j.{Level, Logger} object WordCount { def main(args: Array[String]): Unit = { Logger.getLogger("org").setLevel(Level.OFF) val conf = new SparkConf().setAppName("WordCount").setMaster("local[*]") val sc = new SparkContext(conf) val input = sc.textFile("file:/home/liqing/桌面/input.txt") val words = input.flatMap(line => line.split(" ")) val wordCounts = words.map(word => (word, 1)).reduceByKey(_ + _) val result = wordCounts.collect() result.foreach(println) sc.stop() } } ``` 3. **测试结果**: - 访问Hadoop集群管理界面:`192.168.37.146:50070` - 访问Spark UI:`192.168.37.146:8080` - WordCount程序运行结果展示。 由于WordCount程序不涉及分类或回归任务,因此无法用Precision、Recall等指标进行评估。 #### 实验二:使用Spark MLlib实现线性回归算法 ##### 实验目的与要求 1. **理解线性回归的基本原理**:要求学生能够准确理解线性回归算法的基本原理。 2. **实现线性回归算法**:要求学生能够利用Spark MLlib实现基本的线性回归算法,并进行实际数据集上的训练与测试。 ##### 实验内容 1. **数据准备**:准备用于训练和测试的样本数据集。 2. **模型训练**:利用Spark MLlib提供的API实现线性回归模型训练过程。 3. **模型评估**:使用测试集数据对训练好的模型进行评估,计算准确率、精确率、召回率以及F1分数等指标。 本实验报告通过Hadoop与Spark环境的构建、WordCount程序的实现,以及基于Spark MLlib的线性回归算法的实现与评估,全面涵盖了大数据处理与分析的核心技术要点。学生在完成这些实验后,将对Hadoop、Spark及其机器学习库有更深入的认识与理解。
2025-04-18 23:57:50 762KB hadoop 数据分析
1
在当前的数字化时代,电商平台面临着海量数据的处理挑战,如何从这些数据中挖掘价值并提供个性化的用户体验成为了关键。基于Hadoop和Spark的个性化推荐系统是解决这一问题的有效方案。这个项目实战旨在深入理解大数据处理技术和推荐系统的核心原理,通过实际操作提升分析和构建推荐系统的能力。 **Hadoop** 是一个开源的分布式计算框架,它允许在廉价硬件上处理大规模数据。Hadoop主要由两个核心组件组成:Hadoop Distributed File System (HDFS) 和 MapReduce。HDFS提供了高容错性的分布式存储,而MapReduce则为大规模数据集的并行处理提供了编程模型。在这个项目中,Hadoop将用于存储和预处理电商大数据,例如用户行为日志、商品信息等。 **Spark** 是一种快速、通用且可扩展的大数据处理引擎,它在内存计算方面表现优秀,比Hadoop更高效。Spark提供了更丰富的数据处理API,包括DataFrame和Spark SQL,使得数据科学家和工程师可以更便捷地进行数据分析和机器学习任务。在推荐系统中,Spark可用于执行协同过滤、基于内容的推荐或深度学习模型训练,以实现用户和商品之间的精准匹配。 推荐系统主要分为两大类:**基于内容的推荐** 和 **协同过滤推荐**。前者依赖于用户的历史行为和商品的属性,通过比较新商品与用户过去喜欢的商品之间的相似性来进行推荐。后者则是通过分析大量用户的行为模式,找出具有相似兴趣的用户群体,然后将某一群体中一部分人喜欢的但另一部分人还未发现的商品推荐给他们。 在这个电商大数据项目中,我们需要使用Hadoop的MapReduce对原始数据进行预处理,如清洗、转换和聚合。接着,将预处理后的数据导入Spark,利用Spark的DataFrame和Spark SQL进行数据探索和特征工程,构建用户和商品的画像。然后,可以运用Spark MLlib库中的协同过滤算法,或者使用TensorFlow、PyTorch等深度学习框架在Spark上构建神经网络模型,训练推荐模型。根据模型预测结果生成个性化推荐列表,并实时更新以适应用户行为的变化。 为了适应B2B(企业对企业)和B2C(企业对消费者)的不同场景,推荐系统需要考虑不同的推荐策略。B2B推荐可能更多地关注商品的兼容性、业务合作等因素,而B2C则侧重于用户个人喜好和购买历史。因此,在项目实施过程中,需要针对这两种情况设计不同的评价指标和优化目标。 基于Hadoop和Spark的个性化推荐系统项目涵盖了大数据处理、分布式计算、机器学习以及推荐系统等多个领域的知识。通过实践,我们可以深入了解这些技术在实际电商应用中的作用,同时提升解决复杂问题的能力。
2025-04-16 09:57:13 220B 人工智能 Hadoop
1
随着互联网与移动互联网迅速蒲剧,网上电影娱乐信息数量相当庞大,人们对获取感兴趣的电影娱乐信息的需求越来越大,对电影口碑的要求也逐渐升高。如何给用户可靠的电影推荐结果,并保证用户能满意推荐系统推荐的电影是系统需要满足的一个重要条件。本文电影评分预测系统使用hadoop与centos7搭建的虚拟机系统,mapreducer处理网络爬虫获取的豆瓣热播电影,并对电影进行排序以及可视化。本系统最主要是对未上映的电影进行评分预测,给予消费者更多的权益,使消费者获得更好的观影感受,商家也可以根据消费者喜好合理安排电影场次。该系统设计的预测未上映电影评分与上映后的评分进行比较,分数比较接近,电影评分预测系统设计成功。 ### 基于Hadoop的电影可视化系统设计与实现 #### 1. 绪论 ##### 1.1 目的和意义 随着互联网技术的快速发展,尤其是移动互联网的普及,人们获取信息的方式发生了翻天覆地的变化。电影作为重要的文化娱乐产品之一,其在线上的传播变得越来越广泛。在海量的信息面前,如何快速找到感兴趣的电影,成为了一个迫切需要解决的问题。此外,随着观众对电影品质要求的提高,传统的推荐系统已经难以满足用户需求。因此,构建一个基于Hadoop的电影评分预测系统具有重要的现实意义。 本文旨在通过建立一套高效的数据处理平台,利用Hadoop分布式计算框架处理大规模的电影数据,实现对未上映电影的评分预测功能,从而为用户提供更精准的电影推荐服务,同时也为电影院线提供决策支持,帮助他们更好地理解市场趋势,合理规划排片。 ##### 1.2 研究现状 当前,电影推荐系统主要依赖于用户的历史行为数据,如观看记录、评分等,来推测用户的兴趣偏好。然而,对于未上映的电影,缺乏足够的历史数据进行准确预测。现有的研究大多集中在已有的电影数据上,而对于新上映或即将上映的电影的评分预测较少涉及。此外,大部分推荐系统侧重于算法的优化,而忽略了数据预处理的重要性,尤其是在大数据环境下。 ##### 1.3 设计目标 本系统的开发旨在实现以下几个目标: 1. **数据采集**:利用网络爬虫技术抓取豆瓣网站上关于电影的基本信息及用户评价。 2. **数据处理**:采用Hadoop分布式计算框架处理大量数据,确保数据处理的速度和效率。 3. **预测模型**:建立有效的评分预测模型,对未上映电影进行评分预测。 4. **可视化展示**:通过图表等方式将预测结果直观地呈现给用户,提高用户体验。 5. **推荐机制**:根据用户偏好和评分预测结果,为用户提供个性化的电影推荐服务。 #### 2. 项目分析 ##### 2.1 需求分析 为了更好地满足用户需求,本系统需要具备以下功能: - **电影信息查询**:用户可以根据名称、导演、演员等关键字搜索电影信息。 - **用户偏好推荐**:系统应能够根据用户的历史行为数据,为用户推荐感兴趣的电影。 - **评分预测**:对未上映的电影进行评分预测,为用户提供参考依据。 - **数据可视化**:通过图表等形式展示热门电影排名、评分分布等信息。 ##### 2.2 可行性分析 ###### 2.2.1 市场可行性 目前市场上虽然存在各种类型的电影推荐系统,但针对未上映电影的评分预测尚处于起步阶段。因此,本项目的推出有望填补这一空白,具有较高的市场需求和发展潜力。 ###### 2.2.2 技术可行性 - **Hadoop**:Hadoop是一个开源软件框架,用于存储和处理大型数据集。它能够有效地处理海量数据,适用于本系统的大规模数据处理需求。 - **CentOS 7**:作为一种稳定的Linux发行版,CentOS 7可以作为Hadoop集群的操作系统基础,为系统提供稳定可靠的运行环境。 - **MapReduce**:作为Hadoop的核心组件之一,MapReduce负责数据的并行处理,适合处理大量数据的场景。 ##### 2.3 受众分析 本系统的受众主要包括两部分:一是普通用户,他们希望获得精准的电影推荐和评分预测;二是电影院线管理者,他们希望通过该系统了解市场趋势,为排片决策提供依据。 ##### 2.4 功能分析 - **电影信息查询**:用户可以通过输入关键词快速查找电影信息,包括电影名称、导演、主演等。 - **用户偏好推荐**:根据用户的历史观看记录和评分记录,结合评分预测模型,为用户提供个性化的电影推荐。 - **评分预测**:对于未上映的电影,系统能够利用训练好的预测模型,基于相似电影的历史数据,预测其可能的评分。 - **数据可视化**:系统提供多种数据可视化工具,帮助用户更直观地了解电影评分分布、热度变化等信息。 通过上述分析,可以看出,基于Hadoop的电影可视化系统不仅能够解决现有推荐系统中存在的问题,还能为用户提供更加精准的服务,具有较高的实用价值和研究意义。
2025-04-11 13:15:09 3.45MB hadoop
1
学生端模块功能设计: 个人信息模块:基本信息、修改账户密码、注销账号等 体测报告模块:在系统中录入体测数据生成体质报告 体态分析模块:身高体重视图、风险预警等 智能体测模块:线下体测,线上录入、历年数据对比分析、个性化定制运动处方及营养建议 运动锻炼模块:根据体质健康测试结果,生成专属运动提升计划、运动锻炼成果数据显示 在线课程库模块:提供体育线上教学视频供学生学习 健康知识模块:提供运动相关理论知识、运动损伤紧急处理方法、运动健康知识、营养餐饮建议等 教师端模块功能设计: 个人信息管理:个人信息、修改密码等 班级体测数据管理模块:增删改查学生的体质健康数据 体测分析模块:班级性别比例、年龄分布、成绩分布等视图 运动课程模块:上传运动教学视频等 管理员端模块功能设计: 管理用户账号:管理员负责注册审核、权限控制,以及处理账号相关的问题和请求。 学生信息管理:管理员可以查看和编辑学生的个人信息,包括基本信息、身份验证等。 体测数据管理: 录入和管理体测数据:管理员负责录入学生的体测数据,确保数据的准确性和完整性。 数据分析与报告生成:管理员可以对体测数据进行分析,生成班级........
2025-04-11 12:12:28 21.67MB springboot springcloud Java Hadoop
1
《基于Hadoop Spark奥运会奖牌变化大数据分析实现毕业源码案例设计》 在这个项目中,我们探讨了如何利用Hadoop和Spark两大核心技术进行大规模数据处理和分析,具体应用于奥运会奖牌变化的历史数据。Hadoop是Apache软件基金会开发的分布式文件系统,而Spark则是一个用于大数据处理的快速、通用且可扩展的开源框架。两者结合,为大数据分析提供了强大的工具。 我们需要理解Hadoop的核心组件:HDFS(Hadoop Distributed File System)和MapReduce。HDFS是一种高容错性的分布式文件系统,能够处理和存储海量数据。MapReduce是Hadoop用于并行计算的编程模型,通过“映射”和“化简”两个阶段,将任务分解到集群中的各个节点上执行,然后收集结果。 在本项目中,我们使用Hadoop的HDFS来存储奥运会奖牌变化的大量历史数据。这些数据可能包括历届奥运会的年份、举办城市、参赛国家、获得奖牌的运动员等信息。HDFS的分布式特性使得数据存储和访问效率大大提高,同时保证了数据的安全性和可靠性。 接着,我们引入Spark进行数据处理和分析。Spark相比于Hadoop MapReduce,具有更快的计算速度,因为它在内存中进行计算,减少了磁盘I/O操作。Spark提供了RDD(Resilient Distributed Datasets)的概念,这是一种弹性分布式数据集,可以高效地执行各种计算任务,如转换和动作。 在分析奥运奖牌变化的过程中,我们可能使用Spark的SQL模块(Spark SQL)对数据进行结构化查询,通过JOIN、GROUP BY等操作来统计各国的奖牌总数或奖牌趋势。此外,Spark Streaming可用于实时处理奥运会期间不断更新的奖牌数据,提供最新的奖牌排行榜。 此外,该项目可能还涉及机器学习库MLlib,用于预测未来的奖牌趋势或者分析奖牌获取与国家经济、人口等因素之间的关系。MLlib提供了丰富的机器学习算法,如线性回归、逻辑回归、聚类等,可以帮助我们挖掘数据背后的模式和规律。 在毕业设计的实现过程中,开发者需要编写Python或Scala代码,利用Hadoop和Spark的API进行数据处理。同时,为了保证代码的可读性和可维护性,良好的编程规范和注释也是必不可少的。完整的项目应该包含详细的文档,解释设计思路、实现过程以及结果分析。 这个毕业设计案例展示了Hadoop和Spark在大数据分析领域的应用,通过分析奥运会奖牌变化,我们可以学习到如何利用分布式计算技术处理大规模数据,并从中提取有价值的信息。这对于理解和掌握大数据处理技术,以及在未来的人工智能领域中应用这些技术,都是非常有益的实践。
2025-04-09 19:30:47 1.62MB 人工智能 hadoop 分布式文件系统
1