主要内容:本文详细介绍了在MATLAB环境中通过鲸鱼优化算法(WOA)来优化卷积长短期记忆网络(CNN-LSTM)以实现高效的数据分类与预测的方法。项目不仅提供了理论概述和设计思路,还包含了完整代码及合成数据样本。涵盖了从基础知识到模型优化的设计流程。 适合人群:对于深度学习及机器学习感兴趣的研究员和工程师。 使用场景及目标:适用于各种类型数据的分类及预处理,在需要进行复杂数据集处理的情况下能提供更好的预测效果。 其他说明:文中给出了详细的设计指导和具体的执行脚本,方便读者理解和实践。同时,项目允许在特定应用场景下定制和调参,增强了方法的实用性。
2024-11-18 17:13:49 37KB 鲸鱼算法 MATLAB环境
1
匈牙利算法,又称Kuhn-Munkres算法或KM算法,是一种用于解决完全匹配问题的图论算法。在数学优化领域,它能在一个赋权二分图中找到一个最大匹配,使得所有匹配的边的权重之和达到最小。在实际应用中,这种算法常用于任务分配、工作调度、资源配对等问题。 MATLAB是一种广泛使用的数学计算软件,它提供了丰富的函数库和环境来实现各种算法,包括匈牙利算法。在MATLAB中实现匈牙利算法,首先要理解其基本步骤: 1. **计算成本矩阵**:这是问题的输入,通常是一个n×n的矩阵,其中的元素代表两两之间匹配的成本或权重。矩阵的行和列代表两个集合中的元素,目标是找到一个匹配使得所有匹配的元素对的成本最小。 2. **寻找独立零**:在成本矩阵中查找独立的零元素,即那些不在任何已匹配边上的零元素。如果不存在这样的零元素,算法将进入下一步;如果存在,需要进行调整。 3. **校验**:通过操作矩阵(如增广路径)确保每行和每列至少有一个非负数。这一步是为了保证算法的可行性,因为匈牙利算法假设存在一个完美匹配。 4. **打勾划线**:算法的这一阶段涉及到一系列操作,如增加非零元素、减小零元素、标记匹配边等,以找到一个改进的匹配。这些操作会改变矩阵的结构,使得匹配更加优化。 5. **调用匈牙利算法主体**:MATLAB中,可以编写函数实现匈牙利算法的核心逻辑,该函数接收成本矩阵作为输入,并返回一个最优分配,以及匹配过程中的最小成本。 6. **返回最优分配结果**:经过一系列迭代,算法最终会找到一个满足条件的最优分配,即每个元素都被匹配且总成本最小。分配结果通常是一个大小为n的向量,表示各元素的匹配伙伴。 7. **最小成本**:除了分配结果,匈牙利算法还会返回匹配的最小总成本,这有助于评估优化程度和决策。 在MATLAB环境中,实现匈牙利算法通常涉及自定义函数或者使用已有的优化工具箱函数,例如`assignement`函数。通过阅读和理解`HungaryAlgorithm_matlab`这个压缩包中的代码,你可以更深入地了解如何在MATLAB中具体实现这个算法。这个代码可能包括定义成本矩阵、调用匈牙利算法函数、处理输出结果以及可视化匹配等步骤。 匈牙利算法是一种高效且实用的优化工具,MATLAB提供了便捷的平台来实现和应用这个算法,帮助解决实际问题中的匹配难题。
2024-09-23 20:31:09 2KB matlab 匈牙利算法
1
EM(Expectation-Maximization,期望最大化)算法是一种在概率模型中寻找参数最大似然估计的迭代方法,常用于处理含有隐变量的概率模型。在本压缩包中,"em算法matlab代码-gmi高斯混合插补1"的描述表明,它包含了一个使用MATLAB实现的EM算法,专门用于Gaussian Mixture Imputation(高斯混合插补)。高斯混合模型(GMM)是概率密度函数的一种形式,由多个高斯分布加权和而成,常用于数据建模和聚类。 GMM在处理缺失数据时,可以作为插补方法,因为每个观测值可能属于一个或多个高斯分布之一。当数据有缺失时,EM算法通过不断迭代来估计最佳的高斯分布参数以及数据的隐含类别,从而对缺失值进行填充。 在MATLAB中实现EM算法,通常会包含以下步骤: 1. **初始化**:随机选择高斯分布的参数,包括均值(mean)、协方差矩阵(covariance matrix)和混合系数(weights)。 2. **期望(E)步**:利用当前的参数估计每个观测值属于每个高斯分量的概率(后验概率),并计算这些概率的加权平均值,用以更新缺失数据的插补值。 3. **最大化(M)步**:基于E步得到的后验概率,重新估计每个高斯分量的参数。这包括计算每个分量的均值、协方差矩阵和混合权重。 4. **迭代与终止**:重复E步和M步,直到模型参数收敛或者达到预设的最大迭代次数。收敛可以通过比较连续两次迭代的参数变化来判断。 在压缩包中的"a.txt"可能是代码的说明文档,解释了代码的结构和使用方法;而"gmi-master"很可能是一个文件夹,包含了实现EM算法和高斯混合插补的具体MATLAB代码文件。具体代码通常会包含函数定义,如`initialize()`用于初始化参数,`expectation()`执行E步,`maximization()`执行M步,以及主函数`em_gmi()`将这些步骤整合在一起。 学习和理解这个代码,你可以深入理解EM算法的工作原理,以及如何在实际问题中应用高斯混合模型处理缺失数据。这对于数据分析、机器学习和统计推断等领域都具有重要意义。通过阅读和运行这段代码,你还可以锻炼自己的编程和调试技能,进一步提升在MATLAB环境下的数据处理能力。
2024-09-02 17:35:58 149KB
1
RRTStar(Rapidly-exploring Random Tree Star)是一种路径规划算法,它是RRT(Rapidly-exploring Random Tree)算法的改进版本。RRTStar算法的主要特征在于它能够快速地找出初始路径,并随着采样点的增加,不断地对路径进行优化,直至找到目标点或达到设定的最大循环次数。 RRTStar算法通过在三维空间中构建一棵随机树,并不断扩展树的边界,逐步逼近目标点。算法采用了启发式函数和重新布线策略来提高规划效率和路径质量。启发式函数用于估计当前节点与目标点之间的距离,引导树的扩展方向。而重新布线策略则用于优化树的结构,避免树的过早收敛,形成更平滑的路径。 此外,RRTStar算法是渐进优化的,即随着迭代次数的增加,得出的路径会逐渐优化,但它在有限的时间内无法得出最优路径。这种算法对于解决无人机三维路径规划问题特别有效,能够快速生成可行且平滑的避障路径。总的来说,RRTStar算法通过引入启发式函数和重新布线策略,有效地提升了路径规划的效率和质量,是一种有效的路径规划方法。
2024-08-26 10:03:49 5KB matlab
1
RRT(Rapidly-exploring Random Tree)算法是一种基于随机采样的树形路径规划算法,特别适用于机器人、自动驾驶车辆和其他自主系统的运动规划问题。该算法的核心思想是在机器人的可达空间中随机生成采样点,并通过从树的根节点逐步向采样点扩展节点的方式,构建出一个随机树。当某个节点与目标点的距离小于设定的阈值时,即可认为找到了可行路径。RRT算法能够快速生成可行路径,并且可以在运动过程中动态地调整路径以适应环境的变化。RRT算法的特点是能够快速有效地搜索高维空间,通过状态空间的随机采样点,把搜索导向空白区域,从而寻找到一条从起始点到目标点的规划路径。因此,它特别适合解决多自由度机器人在复杂环境和动态环境中的路径规划问题。RRT算法的应用领域非常广泛,包括但不限于机器人路径规划、游戏开发、无人机飞行以及自动驾驶等。在这些领域中,RRT算法都能够帮助系统快速找到可行的路径,实现智能化行动和自主飞行,确保行驶安全,为解决复杂环境中的路径规划问题提供了有效的解决方案。
2024-08-26 09:46:23 3KB matlab
1
【NSGA II多目标精华算法matlab程序实现】 NSGA II(非支配排序遗传算法第二代)是一种在多目标优化领域广泛应用的算法,由Deb等人于2000年提出。它通过模拟自然选择和遗传进化过程来寻找帕累托前沿的解,即在多个目标之间找到一组最优的折衷解。MATLAB作为一种强大的数值计算和可视化工具,是实现NSGA II的理想平台。 **算法流程** 1. **初始化种群**:随机生成初始种群,每个个体代表一个潜在的解决方案。 2. **适应度评估**:对每个个体计算其在所有目标函数下的表现,通常使用非支配等级和拥挤距离作为适应度指标。 3. **选择操作**:使用选择策略(如锦标赛选择、轮盘赌选择等)保留部分个体进入下一代。 4. **交叉操作**(基因重组):随机选取两个父代个体,通过交叉策略(如单点、双点或均匀交叉)生成子代。 5. **变异操作**:在子代中引入随机变异,增加种群多样性。 6. **精英保留**:将上一代中的非支配解保留到下一代,确保帕累托前沿的连续性。 7. **重复步骤2-6**,直到满足停止条件(如达到最大迭代次数或满足性能指标)。 **MATLAB程序结构** 1. **NSGA_II_Abril.m**:这是主程序文件,负责调用各个子函数,执行NSGA II的主要流程。 2. **test_case.m**:可能包含特定问题的测试用例,用于验证算法的正确性和性能。 3. **NDS_CD_cons.m**:非支配排序和拥挤距离计算模块,这部分是评估个体适应度的关键。 4. **tour_selection.m**:选择操作的实现,例如使用“锦标赛选择”。 5. **TestProblemBounds.m**:定义问题的边界条件,确保生成的个体满足问题域的约束。 6. **genetic_operator.m**:基因操作模块,包括交叉和变异操作的实现。 7. **Problem.m**:问题定义,包括目标函数和约束的声明。 8. **NSGA_II_Abril_Test.m**:可能是一个测试函数,用于运行NSGA II并分析结果。 9. **replacement.m**:替换策略的实现,决定哪些个体将进入下一代。 **重要知识点** 1. **非支配排序**:根据个体在所有目标上的表现将其分为多个非支配层,第一层是最优的,随后的层次依次次优。 2. **拥挤距离**:用于处理相同非支配级别的个体,距离越大表示个体在帕累托前沿的分布越稀疏。 3. **遗传操作**:包括交叉和变异,是算法产生新解的主要方式。 4. **多目标优化**:NSGA II解决的问题通常涉及多个相互冲突的目标,寻找一组均衡的解而非单一最优解。 5. **MATLAB编程技巧**:如何高效地使用MATLAB进行大规模计算和数据处理,以及绘制帕累托前沿。 6. **停止条件**:算法何时停止运行,通常基于迭代次数、性能指标或时间限制。 理解并熟练掌握这些知识点,你就能有效地利用MATLAB实现NSGA II算法,解决实际的多目标优化问题。在实际应用中,可能还需要考虑如何调整参数以优化算法性能,以及如何解析和解释结果。
2024-08-19 11:29:16 537KB NSGAII matlab
1
1.版本:matlab2022A,包含仿真操作录像和代码中文注释,操作录像使用windows media player播放。 2.领域:5G-noma通信,SCMA编译码 3.内容:基于5G-noma通信系统的SCMA算法matlab仿真。稀疏码分多址(SCMA)是一种新型非正交多址技术,具有过载通信的特点。 PRE_o=zeros(PAR.FN,PAR.Data_length); for data_ind=1:PAR.Data_length for v=1:PAR.VN PRE_o(:,data_ind)=PRE_o(:,data_ind)+PAR.CB(:,data_source(v,data_ind),v); end end 4.注意事项:注意MATLAB左侧当前文件夹路径,必须是程序所在文件夹位置,具体可以参考视频录。
2024-07-28 11:06:29 271KB matlab
1
信号分选SDIF的matlab源码,可根据需求自行修改参数。仿真程序的部分结果可见相关文章:【雷达通信】信号分选SDIF序列差直方图算法原理及仿真程序【免费matlab源码,可自行修改参数】
2024-07-02 09:28:07 3KB matlab
1
基于支持向量机递归特征消除(SVM_RFE)的分类特征选择算法,matlab代码,输出为选择的特征序号。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2024-06-14 18:29:26 118KB matlab 支持向量机
1