CFG桩与高压旋喷桩复合地基广泛应用于土木工程各个领域,但在桂林岩溶地区将CFG桩与高压旋喷桩结合来处理复杂地基的实例相对较少,两种桩之间共同作用机制尚不十分清楚。通过对CFG桩与高压旋喷桩组合型复合地基分析及工程实例验证,认为最大限度地发挥CFG桩和高压旋喷桩的优点,软弱地基的承载力能得到大幅度提高。对深部存在的软弱层,采用高压旋喷桩加固,能使地基变形得到有效控制,特别是在复杂岩溶地区,在基岩面高低错落、起伏大、溶沟(槽)陡倾的情形下,高压旋喷桩与CFG桩有机结合,其复合地基具有质量可靠、造价经济、工期可控等优点。
2025-06-25 12:17:27 728KB 高压旋喷桩 CFG桩 复合地基 岩溶地区
1
施耐德断路器FP系列户内高压六氟化硫断路器pdf,施耐德断路器FP系列户内高压六氟化硫断路器:FP型断路器在低气压下运行。断路器操作时由于气体压缩和热量增加引起内部压力的升高,但仍处干较低的气压状态。装有安全膜确保了将一切意外的异常超压泄出,然而这种情况几乎是不会发生的。在大气压的水平下,断路器仍保持足够的绝缘介电性能,确保负荷开断时安全可靠。开断过程中介质恢复速度很快,能开断高于IEC标准规定的瞬态恢复电压。
2025-06-24 08:51:55 2.23MB
1
VCU整车Simulink应用层模型:涵盖高压上下电、车辆蠕动等功能与能量管理、标定量详述,新能源汽车开发必备工具。,VCU整车Simulink应用层模型:涵盖高压上下电、车辆蠕动等核心功能,全局仿真通过,专为新能源汽车工程师设计,vcu整车simulink应用层模型 模型包含高压上下电,车辆蠕动,驻坡功能,能量管理,档位管理,续航里程,定速巡航等等。 每个功能都对应有详细的pdf文档详细说明,进入条件, 出条件,以及标定量详细说明。 程序已经实车测试完成,注意,项目级别的。 模型全局仿真通过,非常适合开发新能源汽车的工程师们。 ,VCU;Simulink应用层模型;高压上下电;车辆蠕动;驻坡功能;能量管理;档位管理;续航里程;定速巡航;实车测试;全局仿真;新能源汽车开发。,基于Simulink的VCU整车应用模型开发,含关键功能管理与仿真测试
2025-06-16 08:40:11 3.35MB scss
1
VCU整车Simulink模型集成高压上下电、车辆蠕动等七大功能,详细文档支持,实车测试完成,适用于新能源汽车开发工程师。,vcu整车simulink模型 模型包含高压上下电,车辆蠕动,驻坡功能,能量管理,档位管理,续航里程,定速巡航等等。 每个功能都对应有详细的pdf文档详细说明,进入条件, 出条件,以及标定量详细说明。 程序已经实车测试完成。 非常适合开发新能源汽车的工程师们。 ,核心关键词:VCU整车; Simulink模型; 高压上下电; 车辆蠕动; 驻坡功能; 能量管理; 档位管理; 续航里程; 定速巡航; 程序实车测试; 新能源汽车工程师。,VCU整车Simulink模型:新能源汽车功能全解析与实测报告
2025-06-16 08:37:28 780KB
1
在探讨高压开关电源的电磁兼容设计时,首先要明确电磁兼容(EMC)的含义。电磁兼容是指电子设备或系统在其电磁环境中能正常工作,且不产生不能接受的电磁干扰(EMI)影响其他设备或系统的能力。因此,设计一个电磁兼容性良好的高压开关电源是确保电源系统稳定运行的前提。 针对高压开关电源,电磁兼容设计主要关注以下几个方面: 1. 干扰源的识别与控制:在高压开关电源中,开关器件的快速开关动作会产生高频干扰,这是主要的干扰源之一。设计时需要识别这些干扰源并采取措施,例如通过优化电路布局、使用软开关技术减少开关损耗和噪声,以及利用屏蔽和接地等方法来控制干扰。 2. 滤波技术的运用:滤波技术是减少电磁干扰的重要手段。在高压开关电源设计中,通常会使用各种滤波器来抑制输入端和输出端的高频干扰。比如在输入端可以使用共模电感和差模电容组合成的LC滤波器来抑制高频噪声;在输出端也可能会使用π型或T型滤波网络,来进一步降低开关噪声。 3. 合理的电路布局和布线:为了减少电磁干扰,高压开关电源的电路布局和布线非常关键。高频电路的布线应尽可能短且粗,以减少阻抗和辐射。此外,重要的信号线需要远离干扰源,并且通过地层隔离来减少信号间的串扰。 4. 接地设计:良好的接地设计可以有效防止电磁干扰,保证设备安全。对于高压开关电源,接地不仅包括信号接地和电源接地,还包括屏蔽接地。合理规划接地路径,可以显著提升电磁兼容性能。 5. 屏蔽技术:为了减少干扰的传播,可以采用屏蔽技术,包括金属壳体、屏蔽罩、屏蔽电缆等。屏蔽能够有效隔离电磁波的传播,对于防止电磁干扰有着显著效果。 6. 元件选择与布局:在电磁兼容设计中,对于元件的选择和布局也有严格要求。高频下的元件应具有良好的频率特性,对干扰信号有较高的抑制能力。同时,对于大功率器件,应充分考虑散热设计,避免因为温度过高而导致性能下降或损坏。 7. 系统级的EMC测试与分析:一个设计良好的高压开关电源系统在完成设计之后,需要通过一系列的EMC测试,这包括辐射发射、传导发射、抗扰度测试等。通过对测试结果的分析,可以进一步优化设计,确保电磁兼容性。 整体而言,电磁兼容设计是一个系统工程,涉及到电路设计、元件选型、布局、屏蔽以及接地等多个方面。针对高压开关电源的电磁兼容设计,必须全面考虑各种可能的干扰源,采取综合性的设计策略,才能确保电源系统在各种复杂电磁环境下稳定运行,同时不会对其他电子设备产生不良影响。
2025-06-15 20:27:49 64KB 开关电源 电磁兼容设计
1
内容概要:本文深入探讨了利用COMSOL Multiphysics软件中的等离子体模块建立针-针电极空气流注放电模型的方法。文中详细介绍了模型的几何结构设定、物理场配置(如电子、正负离子的载流子选择)、化学反应的设置(含21组带电粒子反应)以及Helmholtz光电离过程的具体实现方法。此外,还提供了关于求解器配置、边界条件处理等方面的实用技巧,确保模型能够稳定且高效地运行。通过该模型可以直观地观察到空气流注放电过程中的电场分布、粒子密度变化等情况。 适合人群:从事等离子体物理研究的专业人士,特别是那些对高压放电现象感兴趣的科研工作者和技术人员。 使用场景及目标:适用于研究等离子体行为及其在不同条件下的演化规律,特别是在针-针电极间的空气流注放电特性方面。该模型可用于验证理论预测、探索新型放电器件的设计思路,以及优化现有设备的工作性能。 其他说明:文中不仅提供了详细的建模步骤,还包括了一些实际操作中的注意事项和优化建议,有助于提高仿真的成功率并减少计算成本。同时,作者鼓励读者尝试调整模型参数以获得不同的仿真效果,从而进一步加深对该领域的理解。
1
电动汽车高压上下电控制电路及系统研究 电动汽车的发展是可持续发展趋势下的一个重要方向,它能够减少环境污染、节能降耗和提高汽车的安全性。本文将对电动汽车高压上下电控制电路系统的操作实施进行研究和分析,以提高电动汽车的安全性和可靠性。 1. 电动汽车系统及控制原理 电动汽车系统主要包括高压上下电控制系统、电池管理系统、电机控制器和车辆控制器等组成部分。其中,高压上下电控制系统是电动汽车的核心系统,它包括电池、电机控制器、预充电阻、车辆控制器等硬件部分。软件部分主要包括整车控制器和电池管理系统的控制软件程序。 2. 系统控制原理 在无故障状态下,钥匙开关从 OFF 档到 ON 档的切换中,电池管理系统会将 s2 先闭合,然后再对 s6 闭合,此时会为充电机电容完成预充电,再将 s1 闭合,接着将 s6 断开,最终把控状态再次反馈到整车控制器。 3. 高压上下电控制逻辑实施 当 OFF 切换到 ON 档时,ON 档信号被整车控制器所采集,并判断其高电平是否有效,若有效,会由继电器供电给电池管理系统,而电池管理系统会进行自检,结合是否进行“强制断高压,将相应的故障信息发送到整车控制器,并对信息进行判断,当为无强制断高压故障状态时,会将上电指令发送给 BMS。 4. 高压上下电控电路系统的操作实施 电动汽车高压上下电控电路系统的操作实施主要包括高压上电控制逻辑实施和高压下电控制逻辑实施。高压上电控制逻辑实施是指当 OFF 切换到 ON 档时,电池管理系统会将 s2 先闭合,然后再对 s6 闭合,此时会为充电机电容完成预充电,再将 s1 闭合,接着将 s6 断开,最终把控状态再次反馈到整车控制器。高压下电控制逻辑实施是指当 START 档切换到 OFF 档时,整车控制器会闭合 s5,然后对高压部件完成预充电,再将 s3 闭合,对 DC/AC 使能进行输出,当将 s5 断开时,就完成了整 个上高压电流程操作。 电动汽车高压上下电控制电路系统的操作实施是电动汽车安全性的关键部分,它能够提高电动汽车的安全性和可靠性。但是,需要进行深入的研究和分析,以确保电动汽车高压上下电控制电路系统的安全性和可靠性。
1
高压变频调速系统在现代工业领域中扮演着至关重要的角色,它主要应用于大型电机的控制,以提高能效、优化工艺过程并节约能源。在本压缩包文件"高压变频调速系统仿真研究.rar"中,我们关注的是对这种系统的深入理解和仿真技术的应用。 高压变频调速系统的核心是将交流电源转换为可调频率的交流电源,以适应电动机速度的变化需求。这一过程涉及到电力电子设备,如逆变器和整流器,它们能够实现电压和频率的精确控制。在三电平变频器的设计中,相比于传统的两电平结构,三电平能够提供更平滑的电压波形,降低谐波含量,从而减少对电网的影响和设备的损耗。 "共模电压"是高压变频调速系统中的一个重要概念。在运行过程中,由于逆变器的非对称特性,可能会产生对地的共模电压,这对电机绝缘和控制系统稳定性构成威胁。因此,理解和抑制共模电压是系统设计的关键环节,通常通过优化逆变器控制策略和增加滤波器来实现。 文件"2007ZDH2007LW11000870.pdf"可能包含关于高压变频调速系统仿真研究的具体细节,如仿真模型的构建、仿真软件的使用(如MATLAB/Simulink或PSCAD)、仿真结果的分析以及实验验证等。仿真研究在系统设计阶段至关重要,它允许工程师在实际设备投入运行前预测和优化性能,避免潜在问题,并对控制策略进行精细调整。 在仿真过程中,可能会涉及以下几个关键知识点: 1. **电路模型**:建立准确的电气元件模型,包括逆变器、电机和滤波器等,以便于在仿真环境中重现真实系统的动态行为。 2. **控制策略**:设计合适的控制算法,如PI控制器、矢量控制或直接转矩控制,以实现电机的精确调速和动态响应。 3. **谐波分析**:研究因电压和电流波形不纯导致的谐波效应,以及如何通过滤波器设计来减少谐波影响。 4. **热力学分析**:评估系统在不同工况下的热负荷,确保设备在长期运行中不会过热。 5. **保护机制**:设计和验证过电压、过电流及故障情况下的保护措施,以保证系统安全。 通过这些仿真研究,工程师可以深入理解高压变频调速系统的运行原理,优化系统设计,减少实际应用中的问题,并为后续的实际装置提供可靠的理论支持。此外,仿真研究也为企业节约了成本,因为可以在模拟环境中反复试验,避免了对昂贵设备的多次修改。
2025-04-23 17:20:04 300KB 综合资料
1
高压变频技术是一种广泛应用在电力系统中的电力电子技术,它通过改变电源频率来调整电动机的速度和功率,常用于节能、调速以及改善电网质量。Matlab作为一个强大的数学计算和仿真平台,为高压变频器的建模和分析提供了便利。在本资料中,我们主要探讨基于Matlab的高压变频器仿真模型。 高压变频器通常由三部分组成:整流单元、直流中间环节和逆变单元。整流单元将交流电源转换为直流电,直流中间环节储存能量并平滑电压波动,逆变单元则将直流电转换回交流电,以驱动电动机。在Matlab环境中,可以使用Simulink库中的电力系统模块来构建这些组件。 "CDPWM.mdl"文件很可能是一个采用脉宽调制(PWM)技术的逆变单元模型。PWM是高压变频器中控制电机速度和功率的关键技术,通过改变开关器件的开通和关断时间比例来调整输出电压的平均值。在Matlab的SimPowerSystems库中,有专门的PWM模块可以实现这一功能。用户可以通过调整PWM的载波频率和调制比来优化逆变器性能,例如减少谐波失真和提高效率。 高压变频器的仿真不仅涉及到硬件电路模型,还包含控制策略的设计。常见的控制策略有电压空间矢量调制(SVM)、直接转矩控制(DTC)等。这些控制算法在Matlab的Simulink环境下可通过搭建控制逻辑框图来实现,并与硬件模型相结合进行仿真。 在仿真过程中,"www.imdn.cn.html"和"www.imdn.cn.txt"可能是相关资料或说明文档,可能包含了高压变频器的背景知识、建模步骤、仿真设置和结果解读等内容。这些文档能帮助用户更好地理解和应用提供的Matlab模型。 高压变频的Matlab仿真模型为学习和研究高压变频技术提供了直观且灵活的工具。用户不仅可以验证理论知识,还可以进行参数优化、故障模拟等实际操作,这对于教学、设计和调试高压变频器具有重要意义。在使用过程中,结合相关文档,深入理解模型背后的物理原理和控制策略,将有助于提升对高压变频技术的掌握程度。
2025-04-23 10:35:04 33KB matlab
1
内容概要:本文深入解析了一个经过实车验证的新能源汽车VCU(整车控制器)应用层模型,涵盖高压上下电、车辆蠕行、驻坡功能等多个关键模块。通过Simulink平台构建,模型采用了分层架构设计,并在AutoSAR框架下实现了功能模块解耦。文中详细介绍了各个模块的核心逻辑及其背后的工程智慧,如高压上下电模块中的预充控制、车辆蠕行中的扭矩分配算法以及驻坡功能中的防溜坡策略。此外,还涉及了能量管理模块的SOC估算方法和定速巡航模块的设计细节。每个模块不仅包含了详细的代码实现,还有丰富的实战经验和标定策略。 适合人群:从事新能源汽车控制系统开发的技术人员,尤其是对VCU应用层模型感兴趣的工程师。 使用场景及目标:适用于希望深入了解并优化新能源汽车VCU控制策略的研发团队。目标是帮助工程师们掌握Simulink建模技巧,提高整车控制系统的性能和可靠性。 其他说明:模型已通过30万公里的实车测试,可以直接部署到主流车规级芯片上。附带详尽的标定文档和测试用例,有助于快速搭建和调试新能源汽车控制系统。
2025-04-23 10:05:05 1.76MB Simulink AutoSAR
1