汽车智能驾驶技术及产业发展白皮书
2025-07-10 16:43:54 87.32MB 智能驾驶 汽车电子 人工智能 自动驾驶
1
ISO 34505:2025《道路车辆 自动驾驶系统测试场景 场景评价与测试用例生成》
2025-07-09 12:20:39 21.52MB 自动驾驶
1
内容概要:本文详细介绍了利用罗技G29方向盘、Carsim和Simulink构建低成本驾驶员在环实时仿真系统的方法。主要内容涵盖硬件准备、软件配置、cpar文件调整、UDP通信配置以及模型联合调试等方面。文中提供了具体的代码示例和技术细节,帮助用户快速搭建并优化仿真环境。特别强调了通过调整转向信号比例、设置合理的仿真步长、优化UDP通信等手段提升仿真精度和实时性。此外,还分享了一些实用的小技巧,如使用FIFO队列减少数据丢失、添加低通滤波器稳定信号等。 适合人群:从事自动驾驶算法研究、车辆动力学建模及相关领域的研究人员和工程师,尤其是希望降低实验成本的研究团队。 使用场景及目标:适用于需要进行自动驾驶算法验证、车辆动力学特性研究等场景。主要目标是提供一种经济高效的解决方案,使用户能够在家中或实验室环境中完成专业的驾驶模拟实验,同时确保较高的仿真精度和实时性。 其他说明:文中提到的技术方案不仅能够显著降低成本,还能提高开发效率。对于初学者而言,本文提供的详细步骤和代码示例有助于快速入门。而对于有一定经验的研发人员,则可以通过文中提及的一些高级优化方法进一步提升系统的性能。
2025-06-19 11:20:42 569KB
1
卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于计算机视觉领域,如图像分类、目标检测、图像识别等。在本项目中,它被用来实现疲劳驾驶检测算法,这是一种旨在预防交通事故的重要技术。OpenCV是一个开源的计算机视觉库,它包含了大量的图像处理和计算机视觉功能,常用于图像分析和处理任务。 疲劳驾驶检测是通过分析驾驶员的面部特征,如眼睛状态、面部表情等,来判断驾驶员是否处于疲劳状态。CNN在这一过程中起到了关键作用,它能够学习和提取图像中的特征,并进行分类。通常,CNN结构包括卷积层、池化层、全连接层和输出层。卷积层用于提取图像特征,池化层则用于降低计算复杂度和防止过拟合,全连接层将特征映射到预定义的类别,输出层则给出最终的决策。 在OpenCV中,可以使用其内置的面部检测器(如Haar级联分类器或Dlib的HOG检测器)来定位驾驶员的面部区域,然后裁剪出眼睛部分,输入到预训练的CNN模型中。模型会根据眼睛的开放程度、闭合状态等信息来判断驾驶员是否疲劳。为了训练这个模型,需要一个包含不同疲劳状态驾驶员的图像数据集,包括正常、轻度疲劳、重度疲劳等多种状态。 在实现过程中,首先需要对数据集进行预处理,例如调整图像大小、归一化像素值、数据增强(翻转、旋转、缩放等)以增加模型的泛化能力。接着,使用深度学习框架(如TensorFlow、PyTorch)构建CNN模型,设定损失函数(如交叉熵)和优化器(如Adam),并进行训练。训练过程中,还需要设置验证集来监控模型的性能,避免过拟合。 训练完成后,模型可以部署到实际的驾驶环境中,实时分析摄像头捕获的驾驶员面部图像。当检测到驾驶员可能疲劳时,系统会发出警告,提醒驾驶员休息,从而减少因疲劳驾驶导致的交通事故风险。 本项目的代码可能包含了以下步骤:数据预处理、模型构建、训练过程、模型评估以及实时应用的接口设计。通过阅读和理解代码,可以深入学习如何结合OpenCV和CNN解决实际问题,这对于提升计算机视觉和深度学习技术的实践能力非常有帮助。同时,此项目也提醒我们,人工智能在保障交通安全方面具有巨大的潜力。
2025-06-18 00:07:18 229.28MB 卷积神经网络 Opencv
1
"ISO 23374 智能交通系统 自动代客泊车系统(AVPS)第1部分系统框架、自动驾驶要求和通信接口" 该标准ISO 23374规定了智能交通系统自动代客泊车系统(AVPS)的系统框架、自动驾驶要求和通信接口。该标准分为十一个部分,分别是:目录、前言、介绍、范围、规范性引用、术语及定义、符号及缩略词、系统框架、车辆自动运行功能的要求、管理功能要求、停车设施内的环境要求、整体系统运行要求、自动车辆运行测试场景和附录。 第一部分:目录、前言和介绍 该标准的目录列出了所有的章节和条目。前言部分介绍了该标准的目的和范围。介绍部分讨论了自动代客泊车系统(AVPS)的定义、特点和优点。 第二部分:范围和规范性引用 该部分规定了该标准的范围,包括自动代客泊车系统(AVPS)的定义、自动驾驶要求和通信接口。规范性引用部分列出了相关的国际标准和国家标准。 第三部分:术语及定义 该部分定义了自动代客泊车系统(AVPS)相关的术语和缩略词,包括自动驾驶、自动泊车、智能交通系统等。 第四部分:符号及缩略词 该部分列出了自动代客泊车系统(AVPS)相关的符号和缩略词,包括ISO/SAE 22736中定义的缩略词、子系统名称缩略词和其他术语缩略词。 第五部分:系统框架 该部分规定了自动代客泊车系统(AVPS)的系统框架,包括系统描述、系统配置、功能分配、分类和人机交互。 第六部分:车辆自动运行功能的要求 该部分规定了自动代客泊车系统(AVPS)的车辆自动运行功能的要求,包括执行车辆自动化操作的原则、操作功能的关系、操作设计领域、对DDT的要求、紧急停止的要求、目的地任务的要求、路线规划要求和定位精度要求。 第七部分:管理功能要求 该部分规定了自动代客泊车系统(AVPS)的管理功能要求,包括影像自动车辆运行的功能、远程参与、运行停止、远程辅助、远程脱离、中央控制和其他管理功能。 第八部分:停车设施内的环境要求 该部分规定了自动代客泊车系统(AVPS)在停车设施内的环境要求,包括公共要求、工作区域、下车点和上车点、SV识别区域、无线通信、运行停止设备和灯光。 第九部分:整体系统运行要求 该部分规定了自动代客泊车系统(AVPS)的整体系统运行要求,包括通信接口要求、安全目标、安全要求、系统状态及转换图、抑制条件代码、目标及时间检测数据报告、数据记录和给用户的信息。 第十部分:自动车辆运行测试场景 该部分规定了自动代客泊车系统(AVPS)的自动车辆运行测试场景,包括基本场景、交通规则及行为、静态目标避让和动态目标避让。 附录部分包括通信序列、测试目标和定位标记。 该标准ISO 23374规定了自动代客泊车系统(AVPS)的系统框架、自动驾驶要求和通信接口,旨在确保自动代客泊车系统的安全性、可靠性和高效性。
2025-06-17 10:54:28 8.62MB 自动驾驶
1
### 自动驾驶算法分享与实现:代客泊车AVP的Python Demo #### 前言 本文旨在探讨一种利用Python实现的代客泊车(Automated Valet Parking, AVP)算法。主要内容涵盖AVP算法的核心部分,包括但不限于基于A*算法的全局导航路径生成方法、自动泊车轨迹生成策略以及基于模型预测控制(Model Predictive Control, MPC)的车辆横向和纵向控制技术。此外,还将简要介绍如何设置和调试这一示例程序所需的环境。 #### 一、环境配置 为了顺利运行本文提供的代客泊车AVP Python示例代码,需确保系统中已安装Python 3.6版本,并且还需安装一系列必要的第三方库。这些库可通过执行以下命令来安装: ```bash pip install -r requirements.txt ``` 其中`requirements.txt`文件中包含了所有必需的依赖项。值得注意的是,`opencv-python`库可能无法通过pip直接安装,建议使用conda环境进行安装。以下是具体步骤: 1. **基本依赖**: - `numpy` - `opencv-python` - `python-maths` - `scipy` - `time` - `matplotlib` 2. **安装方法**: - 对于`opencv-python`,建议使用以下命令在conda环境中安装: ```bash conda install opencv ``` 完成以上步骤后,即可满足运行示例程序所需的最低环境配置要求。 #### 二、算法流程 ##### 1. 全局导航路径生成 在AVP算法中,全局导航路径生成主要采用A*算法。A*是一种常用的寻找最短路径的算法,在地图上搜索从起始点到终点的最短路径。其核心思想是在探索过程中同时考虑两个因素:已经走过的路径长度以及到达目标节点的估计距离。在AVP场景中,A*算法可以帮助车辆找到从当前位置到达目标停车位置的最佳路径。 ##### 2. 自动泊车轨迹生成 自动泊车轨迹生成是AVP算法中的另一个关键环节。该过程涉及计算车辆从当前行驶状态平稳过渡至最终停放位置所需的一系列动作指令。通常情况下,这一步骤会利用运动学模型和优化方法来确保轨迹的安全性和平滑性。例如,可以使用曲线拟合或样条插值等技术来生成一条连续平滑的行驶轨迹。 ##### 3. 基于MPC的横纵向控制 基于MPC的横纵向控制则是指利用模型预测控制策略对车辆进行精确控制。MPC是一种先进的控制方法,特别适用于处理具有约束条件的动态系统。在AVP场景下,它可以帮助车辆在遵守速度限制、避免碰撞的同时,实现精确的停车操作。MPC通过不断更新预测模型并在每个采样时刻求解一个优化问题来实现这种控制策略。 #### 三、调试方法 为了更好地理解和调试上述算法,下面列出了一些常见的调试步骤和技巧: 1. **更改停车位**:可以在`main_autopark.py`文件中修改停车位编号(共有1~24个停车位可供选择)。 2. **更改起点**:同样地,在`main_autopark.py`文件中可以调整车辆的起始位置。 3. **调整障碍物坐标**:根据实际环境的变化,可以通过修改障碍物的位置信息来模拟不同的场景。 4. **调整墙壁坐标**:对于模拟环境中存在的墙壁或其他固定障碍物,也需要相应调整其坐标信息以反映真实情况。 通过上述步骤,开发者可以有效地测试并优化算法性能,确保其在各种复杂环境下的鲁棒性和实用性。 本文不仅介绍了代客泊车AVP算法的基本原理和技术细节,还提供了具体的环境配置指南和调试技巧。这为读者深入理解并实践AVP技术提供了一个良好的起点。
2025-06-13 16:06:04 668KB 自动驾驶
1
时空联合规划是在自动驾驶领域中一种综合考虑空间和时间因素的路径规划方法。它旨在解决在约束动态环境中,如何更有效地预测与规划车辆运动轨迹的问题。这种方法尤其适用于复杂多变的道路条件,例如在狭窄道路交汇或超车时,能够提供合理的行驶轨迹。 传统的路径规划方法在考虑车辆运动时,往往将空间和时间因素分开处理,这样会造成在规划过程中丢失一些关键信息,从而影响最终轨迹的优劣。时空联合规划通过将空间和时间联合起来,在三维空间内直接计算最佳轨迹,因此可以提供更加准确和高效的解决方案。 时空联合规划的实现通常包括以下几个步骤:在x-y平面求解最佳行车路线;接着,根据路径计算行车速度的曲面;计算曲面上的最佳速度,获得最终的轨迹。这种方法可以充分考虑动态障碍物信息,使得路径规划更加合理。 在方法论上,时空联合规划可以基于搜索的规划方法、基于迭代计算的规划方法和基于时空走廊的规划方法等实现。例如,基于Hybrid A*的时空联合规划是一种有效的路径规划技术。Hybrid A*算法结合了启发式搜索和动态规划的特点,可以有效处理复杂场景下的轨迹规划问题。它利用离散化前轮转角集合和加速度集合来更新车辆状态,同时定义时空节点的启发式函数和成本函数来优化搜索过程,从而加快路径规划的搜索速度,降低算力要求。 构建三维时空联合规划地图是时空联合规划中的关键步骤,它基于二维栅格地图沿时间轴扩展生成三维时空地图。三维时空地图不仅包含车辆的位置和运动学信息,还能展示车辆的状态更新过程,包括横向和纵向速度以及偏航角。这样的地图可以为车辆提供更加丰富的环境信息,使得路径规划更加精确。 在应用案例展示中,时空联合规划能够有效解决窄道会车问题。窄道会车对于自动驾驶车辆来说是一个挑战,因为需要在有限的空间内合理地规划车辆的行进路线和速度。时空联合规划可以提供一种在三维空间内直接计算最佳轨迹的方法,从而有效避免会车时的潜在碰撞风险,保证行车安全。 时空联合规划在自动驾驶中的应用具有诸多优势。它能够更合理地考虑动态障碍物的影响,避免传统算法容易陷入的轨迹次优问题。同时,这种方法符合人类驾驶习惯,通过直接学习人类司机的行为模式,可以使得自动驾驶系统更加容易被用户接受和信任。在未来,随着技术的不断进步和算法的进一步优化,时空联合规划将在自动驾驶领域发挥越来越重要的作用。 时空联合规划作为自动驾驶预测与决策规划的重要组成部分,通过将空间和时间因素结合起来,为自动驾驶车辆在复杂环境中的安全、高效运行提供了新的解决思路和方法。随着相关技术的不断成熟和应用范围的扩展,时空联合规划将有助于推动自动驾驶技术的发展,并最终实现安全可靠的自动驾驶系统。
2025-06-06 16:38:28 3.91MB 自动驾驶 预测与决策
1
版本为2.8.4,适用于KSP1.7.2。例行跟进releases正式发行版更新的汉化。 Mechjeb版权归原作者所有。   默认推荐下载最新版,解压到GameData文件夹下即可。若出现MJ界面不显示或功能不正常,请完全删除GameData文件夹下的MechJeb文件夹再复制进去,以及删除其他旧版MOD。   GameData文件夹里只能留一个ModuleManager.xxx.dll文件,请删除旧版本。
2025-05-27 17:51:13 3.75MB Space 自动驾驶
1
"基于LQR算法的自动驾驶控制:动力学跟踪误差模型的C++纯代码实现与路径跟踪仿真",自动驾驶控制-基于动力学跟踪误差模型LQR算法C++纯代码实现,百度apollo横向控制所用模型。 代码注释完整,可以自己看明白,也可以付费提供代码和算法原理讲解服务。 通过C++程序实现的路径跟踪仿真,可视化绘图需要安装matplotlibcpp库,已经提前安装好包含在头文件,同时需要安装Eigen库,文件内也含有安装教程。 可以自定义路径进行跟踪,只需有路径的X Y坐标即可,替下图中框框标出来的地方路径就可以了。 图片是双移线和一些自定义的路线仿真效果。 ,自动驾驶控制; LQR算法; C++纯代码实现; 动力学跟踪误差模型; 横向控制; 路径跟踪仿真; matplotlibcpp库; Eigen库; 自定义路径跟踪; 图片仿真效果,C++实现LQR算法的自动驾驶路径跟踪控制代码
2025-05-23 18:31:47 1.11MB
1
HEV串并联(IMMD) 混动车辆仿真 simulink stateflow模型包含工况路普输入,驾驶员模型,车辆控制模型(电池CD CS 状态切 以及EV HEV Engine 模式转), 电池、电机系统模型, 车辆本体模型等。 可进行整车仿真测试验证及参数优化,体现IMMD基本原理。 HEV串并联(IMMD)混动车辆仿真技术是一项涉及到使用Simulink和Stateflow工具构建模型的技术。IMMD(Intelligent Multi-Mode Drive)系统是混合动力车辆中的一个多模式驱动系统,它可以根据不同的驾驶条件和路况,智能切换电动汽车(EV)模式、混合动力(HEV)模式和发动机单独驱动模式。该仿真模型涉及到多个关键模块,包括工况路普输入、驾驶员模型、车辆控制模型、电池模型、电机系统模型和车辆本体模型等。 工况路谱输入指的是根据实际道路测试或驾驶数据生成的车辆行驶环境参数,这些参数是仿真测试的基础。驾驶员模型在仿真中扮演着模拟人类驾驶员行为的角色,它可以是简单的规则驱动模型,也可以是基于复杂算法的模型,用以模拟驾驶员的加速、制动、转向等操作。 车辆控制模型是整个混动车辆仿真的核心,它根据电池状态(电池充放电状态CD CS)和当前的行驶模式来决定最合适的工作状态。这个模型会涉及到电驱动和发动机驱动模式之间的切换逻辑,以及整个能量管理系统的控制策略。电池和电机系统模型则分别负责模拟电池的充放电特性和电机的工作特性。车辆本体模型则包含车辆动力学、传动系统、制动系统等关键部分。 整车仿真测试验证及参数优化是通过构建上述模型后进行的一系列仿真活动,目的是为了验证模型的准确性和系统的稳定性,并根据测试结果对系统的参数进行调整和优化。这一过程能够帮助工程师理解IMMD系统的基本原理,并对其工作性能进行深入分析。 从文件名称列表中可以看出,该压缩包内含多个与HEV串并联混动车辆仿真相关的文件。例如,“串并联混动车辆仿真模型.html”可能是对整个仿真模型的说明文档,“串并联混动车辆仿真技术分析”和“串并联混动车辆仿真研究一引言随着汽车工”可能是对技术原理和应用背景的详细阐述。同时,“标题串并联混动车辆仿真模型和验证摘要本.doc”可能是对仿真模型的结构和验证结果的总结。而“混动之梦探秘串并联系统与模型在这个.txt”可能涉及到对串并联系统在混动车中的应用和模型构建的探讨。 这些文档共同构成了HEV串并联混动车辆仿真技术的详细说明,从理论基础到实际应用,再到系统的搭建和验证过程,覆盖了这一技术领域的各个方面。通过这些文件的阅读和理解,可以深入把握HEV串并联混动车辆仿真技术的关键点和实现细节。
2025-05-18 00:23:20 578KB 正则表达式
1