内容概要:UN-R79法规旨在为道路车辆转向系统制定统一规定,涵盖传统机械转向系统和高级驾驶辅助转向系统(ADAS)。法规详细规定了转向系统的分类、性能要求、故障处理、认证流程及生产一致性要求。传统转向系统要求在转向操纵装置与转向轮之间保持可靠的机械连接,而新规允许采用无刚性机械连接的高级驾驶辅助转向系统,但仍需驾驶员保持对车辆的主导控制权。法规还特别强调了自动指令转向、校正转向、紧急转向等功能的具体要求,以及转向系统的故障处理机制和驾驶员干预机制。此外,法规明确了转向系统的测试方法和生产一致性核查流程,并对不同类别的车辆(如M、N、O类)提出了具体要求。 适用人群:汽车制造商、工程师、政策制定者、质量控制人员及相关行业从业者。 使用场景及目标:①确保车辆转向系统的可靠性与安全性,特别是在引入新技术的情况下;②为不同类型车辆(如乘用车、商用车)提供明确的转向系统设计和认证标准;③指导制造商进行转向系统的测试与生产一致性管理;④为政策制定者提供法规依据,以确保市场上的车辆符合安全标准。 其他说明:该法规不仅适用于传统转向系统,还涵盖了现代高级驾驶辅助系统,如车道保持、自动泊车
2025-11-12 14:02:31 909KB 自动驾驶技术 汽车工程
1
利用Carsim和Simulink构建驾驶模拟软件实时仿真的方法,涵盖硬件连接、cpar文件设置、UDP通信配置以及自动驾驶算法测试等方面。首先讲解了如何将罗技G29方向盘接入Carsim,通过Simulink作为中间件实现信号转换。接着深入探讨了cpar文件的关键参数配置,确保实时仿真效果。然后阐述了UDP通信的具体实现步骤,解决了常见的网络传输问题。最后展示了如何在Prescan环境中进行自动驾驶算法测试,并提供了实时性调优技巧。 适合人群:对无人驾驶技术和实时仿真感兴趣的工程师和技术爱好者,尤其是那些希望低成本搭建自动驾驶测试平台的研究人员。 使用场景及目标:适用于想要深入了解Carsim和Simulink联合仿真的技术人员,旨在帮助他们掌握从硬件连接到算法测试的全流程,最终实现高效的自动驾驶系统开发和验证。 阅读建议:读者应具备一定的MATLAB/Simulink基础,熟悉基本的汽车动力学概念。文中提供的具体代码片段和配置建议可以直接应用于实际项目中,建议边阅读边动手实践,以便更好地理解和应用所学知识。
2025-11-08 10:23:14 420KB
1
本文提出一种基于ResNet的自动驾驶车辆轨迹预测模型,利用深度残差网络捕捉多维特征,实现对周围交通参与者(如车辆、行人、摩托车)未来轨迹的精准预测。模型直接输入原始图像,输出三条可能轨迹及其置信度,具备较强的非线性拟合能力。实验结果显示,ResNet-34在轨迹预测任务中表现优异,损失值显著低于VGG-16和VGG-19模型,验证了其在复杂交通场景下的优越性能。研究为自动驾驶环境感知与决策规划提供了有效技术路径。
2025-11-07 18:49:31 1.68MB 自动驾驶 深度学习 ResNet
1
自动驾驶技术自提出以来,一直是全球科技领域研究的焦点。在智能化时代背景下,自动驾驶不仅要依赖于先进的硬件设备,更要依靠强大的软件算法来保障行驶安全。自动驾驶路况数据集的出现,正是为了服务于这一目标。此数据集包含了四种典型的道路条件——铺装道路、积雪道路、积水道路和沙土路,为自动驾驶技术的场景识别和决策提供了丰富的实际应用场景。 铺装道路是人类日常出行最普遍的道路类型,也是自动驾驶技术测试与应用的基准环境。在这一环境中,自动驾驶系统需要能够识别并准确地跟踪车道线,辨识各种交通标志和信号灯,以做出合乎逻辑的行驶决策。铺装道路数据集的使用,能帮助自动驾驶系统模拟真实世界的驾驶条件,提高在正常条件下的行驶稳定性和安全性。 积雪道路和积水道路均为极端天气条件下可能出现的场景,它们对自动驾驶系统的感知能力和决策能力提出了更高要求。积雪覆盖下的道路,不仅会降低能见度,还会因雪的附着而改变道路的表面特性,这对于视觉识别系统而言是极大的挑战。同时,积水也可能使道路变得湿滑,特别是在高速行驶状态下,车辆的抓地力会显著下降,增加了行驶的不确定性。通过这些路况数据集的训练,自动驾驶系统可以学习到如何在视线受阻和道路滑滑的条件下保持稳定,采取合适的行驶策略来保障行车安全。 沙土路作为非铺装道路的代表,其表面不平整,摩擦系数变化较大,且易于出现砂石飞溅的情况。自动驾驶系统面对沙土路时,需要具备较强的场景适应能力。系统不仅要准确识别道路的形状和状态,还要能在短时间内调整行驶策略,避免车辆失控。沙土路数据集的训练,使得自动驾驶技术能在恶劣路面上实现更好的控制和更高的通过性。 Yolov5目标检测模型是自动驾驶领域的一个重要工具,它的高效性和准确性使其在自动驾驶路况分类任务中显得尤为重要。该模型能够快速准确地定位路面特征,并根据这些特征进行分类,进而为自动驾驶决策系统提供实时路况信息。结合上述路况数据集,Yolov5模型能够帮助自动驾驶系统学习到在多种复杂条件下的行驶策略,从而提高识别和处理复杂路况的能力。 通过使用这些数据集,研究人员和工程师能够更加精确地训练和验证自动驾驶算法,使之在现实世界中遇到各种道路条件时,能够做出快速且正确的判断。这对于推进自动驾驶技术的商业化进程具有重要意义,因为它直接关系到自动驾驶车辆的安全性和可靠性。 未来,随着自动驾驶技术的不断进步,对于路况数据集的需求也将不断增长。研究人员需要不断收集和更新各类道路情况的数据,以适应不断变化的道路环境。同时,算法的优化和创新也离不开丰富而高质量的数据支撑。只有这样,才能确保自动驾驶技术在各种复杂环境中的性能不断提升,最终实现完全自动驾驶的目标。
2025-11-07 00:16:54 787.03MB 自动驾驶 数据集
1
计算机视觉与深度学习作为人工智能领域中最为活跃的分支之一,近年来得到了迅速的发展。特别是在图像处理和目标检测方面,研究者们不断推出新的算法和技术,旨在实现更高效、更准确的图像理解和分析。本文所涉及的正是这样一个综合性课题,即基于YOLOv5(You Only Look Once version 5)这一流行的目标检测算法的改进算法开发出的高精度实时多目标检测与跟踪系统。 YOLOv5算法是一种端到端的深度学习方法,它以速度快、准确率高而著称,非常适合用于处理需要实时反馈的场景,如智能监控、自动驾驶和工业自动化等。通过使用卷积神经网络(CNN),YOLOv5能够在单次前向传播过程中直接从图像中预测边界框和概率,相较于传统的目标检测方法,它显著降低了延迟,提高了处理速度。 该系统在原有YOLOv5算法的基础上,引入了多方面改进。在算法层面,可能采用了更先进的网络结构或优化策略,以提升模型对于不同场景下目标检测的适应性和准确性。系统可能整合了更多的数据增强技术,使得模型能更好地泛化到新的数据集上。此外,为了提升多目标跟踪的性能,系统可能还集成了高级的追踪算法,这些算法能够保持目标在连续帧中的稳定性,即使在目标之间发生交叉、遮挡等复杂情况下也能实现准确跟踪。 OpenCV(Open Source Computer Vision Library)是计算机视觉领域的一个重要工具库,它提供了一系列的图像处理函数和机器学习算法,能够帮助开发者快速实现各种视觉任务。而TensorFlow和PyTorch作为当下流行的深度学习框架,为算法的实现提供了强大的支持,它们丰富的API和灵活的计算图机制使得构建复杂模型变得更加简单和高效。 智能监控系统通过实时图像处理和目标检测技术,可以自动识别和跟踪视频中的异常行为和特定物体,从而提高安全性。在自动驾驶领域,多目标检测与跟踪系统对于车辆行驶环境中的行人、车辆、路标等进行精准识别,是实现高级驾驶辅助系统(ADAS)和自动驾驶技术的关键。工业自动化中,对于生产线上的零件进行实时监控和识别,能够提高生产效率和质量控制的精确度。 从压缩包内的文件名称“附赠资源.docx”和“说明文件.txt”推测,该压缩包可能还包含了一份详细的使用说明文档和附加资源文件。这些文档可能提供了系统的安装部署、配置指南、使用教程等,对于用户来说,是十分宝贵的参考资料。而“EvolutionNeuralNetwork-master”文件夹可能包含了与目标检测算法相关的源代码和训练好的模型文件,这对于理解和复现该系统具有重要的参考价值。 在技术不断进步的今天,深度学习和计算机视觉技术的应用领域正变得越来越广泛。YOLOv5算法的改进和应用只是冰山一角,未来,我们有理由相信,随着技术的不断成熟和优化,基于深度学习的图像处理和目标检测技术将在更多领域发挥其重要作用,从而推动社会的进步和发展。
2025-11-04 16:46:09 94KB
1
自动驾驶 ************************************************** 使用IMGUI + IM3d + implot 实现自动驾驶可视化工具(整套源码)
2025-10-29 13:21:49 13.39MB 自动驾驶
1
自动驾驶控制技术:基于车辆运动学模型MPC跟踪仿真的研究与实践——Matlab与Simulink联合仿真应用解析,自动驾驶控制-基于车辆运动学模型MPC跟踪仿真 matlab和simulink联合仿真,基于车辆运动学模型的mpc跟踪圆形轨迹。 可以设置不同车辆起点。 包含圆,直线,双移线三条轨迹 ,核心关键词:自动驾驶控制;MPC跟踪仿真;基于车辆运动学模型;圆形轨迹;Matlab联合仿真;双移线轨迹。,"MATLAB与Simulink联合仿真:基于车辆运动学模型的MPC自动驾驶控制圆形轨迹跟踪"
2025-10-26 21:01:41 286KB
1
在当今科技的快速发展中,深度学习已经在多个领域展现了其强大的能力,尤其在自动驾驶技术领域,深度学习的应用更是至关重要。自动驾驶技术的核心之一是能够准确识别和理解驾驶环境,这包括了对真实场景的判断以及识别出潜在的假场景,即那些可能会迷惑自动驾驶系统、导致误判的情况。为了训练和测试自动驾驶系统中的图像识别模型,Kaggle——一个全球性的数据科学竞赛平台——提供了一个名为“自动驾驶的假场景分类”的数据集,该数据集专门用于深度学习模型的训练与验证。 该数据集包含了大量的图像文件,这些图像被分为训练数据和测试数据。训练数据集包含图像及其相应的标签,而测试数据集则只包含图像,不提供标签,目的是让使用者通过模型预测来判断测试图像中哪些是假场景。这个数据集对于图像分类任务的新手来说是一个极佳的练习机会,因为它不仅提供了一个接近实战的应用场景,同时也让初学者能够在掌握基本知识后立即应用到实践中。 在使用这个数据集进行深度学习实践时,通常会采取以下步骤: 1. 数据预处理:由于训练深度学习模型需要大量的数据,且数据通常需要被调整到适合模型输入的格式和大小,因此数据预处理是必须的步骤。这可能包括对图像进行大小调整、归一化处理以及数据增强等操作。 2. 模型选择:根据问题的复杂性和预期的准确度,选择合适的深度学习模型。对于图像分类问题,卷积神经网络(CNN)是常用的模型。目前存在许多预训练好的CNN模型,如ResNet、Inception和VGG等,它们可以作为特征提取器或直接用于微调。 3. 模型训练:使用训练数据集对模型进行训练。在这个过程中,模型参数将通过反向传播算法进行调整,以最小化输出和真实标签之间的差异。 4. 模型评估:在训练模型后,使用验证集评估模型性能,检验模型是否具有良好的泛化能力。在此过程中,还可以通过调整超参数,如学习率、批次大小等,来进一步优化模型。 5. 模型测试:使用测试数据集对训练好的模型进行最终测试,评估模型在未见数据上的表现。这一步骤对于了解模型的实际应用能力至关重要。 6. 结果提交:在Kaggle竞赛中,参与者需要将模型的预测结果提交到平台上,以与其他参赛者进行排名和比较。 需要注意的是,自动驾驶假场景分类不仅仅是对图像内容进行判断,还涉及到对场景语义的理解。深度学习模型需要能够识别出场景中的异常情况,例如虚假的交通标志、奇怪的车辆行为等。因此,这个数据集对深度学习的应用提出了较高的要求,也是初学者从理论学习过渡到实践操作的一次挑战。 此外,深度学习在自动驾驶领域的应用不仅仅局限于场景分类,它还涉及到目标检测、语义分割、行为预测等多个方面。随着技术的不断进步,深度学习在自动驾驶领域的角色将会越来越重要,也将不断推动自动驾驶技术向更高的安全性和智能化水平发展。 Kaggle提供的“自动驾驶的假场景分类”数据集是深度学习和自动驾驶领域交叉应用的一个缩影,它不仅帮助新手学习和掌握深度学习的技巧,同时也为自动驾驶技术的研究和应用提供了宝贵的数据资源。通过这个数据集的练习,学习者可以更加深入地理解深度学习在实际问题中的应用,并为未来可能参与的自动驾驶项目打下坚实的基础。
2025-10-24 00:31:15 141.38MB 深度学习 自动驾驶
1
内容概要:本文详细探讨了基于时间到碰撞(TTC)和驾驶员安全距离模型的自动紧急制动(AEB)算法在Carsim与Simulink联合仿真环境下的实现方法和技术要点。文中介绍了AEB算法的核心模块,包括CCR M、CCRS、CCRB模型,二级制动机制,逆制动器模型和控制模糊PID模型。同时,阐述了TTC和驾驶员安全距离模型的具体应用及其重要性,并强调了Carsim与Simulink联合仿真的优势,即通过整合车辆动力学和控制系统建模,实现了对AEB系统的闭环仿真。此外,还讨论了法规测试场景的搭建技巧,如CNCAP和ENCAP标准的应用,以及一些常见的调试经验和注意事项。 适合人群:从事自动驾驶技术研发的专业人士,尤其是关注AEB系统设计与仿真的工程师。 使用场景及目标:适用于希望深入了解AEB系统工作原理的研究人员和技术开发者,旨在提高AEB系统的性能和可靠性,确保自动驾驶汽车在复杂交通环境下能够安全有效地避免碰撞。 其他说明:文中提供了多个代码片段和模型示例,帮助读者更好地理解和实践AEB算法的设计与优化。同时,作者分享了许多个人实践经验,包括常见错误和解决方案,有助于初学者快速掌握相关技能。
2025-10-20 20:18:07 1.16MB
1
内容概要:文章介绍了自动驾驶车辆轨迹规划与运动控制的关键技术,采用动态规划(DP)算法进行动态障碍物的轨迹边界规划,生成可行的行驶路径范围,并将该边界作为约束条件用于底层运动控制设计。在此基础上,结合非线性模型预测控制(NMPC)对车辆的加速度和方向盘转角进行精确控制,状态量包括纵向/侧向车速及Frenet坐标系下的s和ey。整体方案实现了从环境感知到运动执行的闭环控制。 适合人群:从事自动驾驶算法研发的工程师、控制理论研究人员以及具备一定MATLAB编程基础的硕士、博士研究生。 使用场景及目标:①解决复杂动态环境中车辆避障与轨迹生成问题;②实现高精度的车辆运动控制,提升自动驾驶系统的稳定性与安全性。 阅读建议:建议结合MATLAB脚本程序实践文中提出的DP与NMPC算法,重点关注状态建模、约束处理与控制器参数调优,以深入理解算法在实际系统中的集成与性能表现。
2025-09-23 18:30:42 240KB
1