股神--人工智能股票预测系统是专门为股票投资者开发的一套全新的基于人工智能技术的股票趋势预测软件平台。该软件以基因演化算法(GP)为内核对股票交易历史数据进行自动建模和学习,挖掘出股票交易大数据中隐藏的行为规律,并以此为依据对下一个股票日的最高价和最低价的涨跌趋势进行预测分析。该软件能够帮助您了解何时进入股市,何时退出股市,并在最佳的时机买进或卖出股票,从而获取最大的利润和收益。 支持6种典型的股票类别:上证指数、上证A股、上证B股、深证指数、深证A股和深证B股。 精确的股票预测信息(如上涨、下跌或持平)和买卖推荐信息(如买入、卖出、持股以及买入价、卖出价等)。 基因演化算法参数支持用户自定义,默认设置为种群大小:30,杂交概率:0.8,变异概率:0.1,最大运行代数:1000。 支持批量操作,如股票批量评测、模型批量训练、股票批量预测、批量增加股票代码、批量添加/撤销我的股票池等。 对大多数股票而言,最高价与最低价的涨跌趋势预测准确度达60%-80%;对部分股票而言,预测准确度最高可达90%。 仅需简单的操作即可完成股票评测、智能选股、模型训练以及股票预测等功能。 系统主界面支持从云数据库和本地数据库自动更新最优股票预测信息。 支持流行的微软Windows操作系统,如Windows 98/Me/2000/XP/Vista/7。
2025-08-24 22:25:40 1.16MB 股票,预测
1
内容概要:本文详细介绍了如何使用MATLAB实现一个基于贝叶斯优化的Transformer-BiGRU分类模型。首先简述了Transformer和BiGRU的基本原理及其在处理时序数据方面的优势。接着,文章深入讲解了贝叶斯优化的概念及其在参数调优中的应用。随后提供了完整的MATLAB代码框架,涵盖数据加载与预处理、模型定义、贝叶斯优化、模型训练与预测、结果可视化的各个环节。通过具体实例展示了该模型在光伏功率预测等场景中的优越表现。 适合人群:对机器学习和深度学习感兴趣的研究人员和技术爱好者,特别是有一定MATLAB基础的初学者。 使用场景及目标:适用于需要处理时序数据的任务,如光伏功率预测、负荷预测等。目标是帮助读者理解和实现一个高效的时序数据分析工具,提高预测精度。 其他说明:文中提供的代码框架简洁明了,附带详细的注释和直观的图表展示,便于快速上手。同时提醒了一些常见的注意事项,如数据归一化、环境配置等,确保代码顺利运行。
2025-08-08 23:18:42 3.17MB
1
房价预测系统是一种利用机器学习或深度学习技术对房地产市场价格进行预测的系统。这类系统通常基于大量的历史房价数据,通过构建预测模型,来推算未来或未经交易的房产价格。本压缩包包含了完整的代码和数据,可用于实际应用开发或学习研究。 在本压缩包中,我们能找到包含实际交易数据的文件,例如“房价数据.csv”和“anjuke_house_prices.csv”,这些文件中包含了不同房产的特征数据如位置、面积、建造年份以及成交价格等,是构建房价预测模型的重要依据。此外,还包含了一些模型文件,如“knn_model.pkl”,这表明使用了k-最近邻算法(K-Nearest Neighbors, KNN)构建的预测模型,而“BP_NN_Prediction_vs_True.png”和“knn_Prediction_True.png”则可能是展示了不同模型预测结果与实际成交价格的对比图像,帮助我们评估模型的准确性。 “BP_NN_Loss.png”文件则可能展示了使用了反向传播算法的神经网络(Back Propagation Neural Network, BP NN)在训练过程中的损失值变化,这有助于分析模型在学习过程中的表现,从而对模型进行优化。另外,代码文件“房价预测新版.py”可能是主要的预测脚本,用于执行预测任务和输出结果。而“对比实验-逻辑回归.py”和“对比试验-随机森林.py”则是对不同机器学习算法进行测试和比较的脚本,通过这些对比可以了解不同算法在房价预测任务中的优势和局限性。 此压缩包提供了一套完整的房价预测系统开发资源,包括数据集、模型文件、可视化图表和源代码,适用于机器学习和深度学习的研究和实践。通过这些资源,开发者不仅可以深入理解房价预测问题,还能够学习到如何使用机器学习方法解决实际问题,特别是如何在处理回归问题时选择合适的模型,以及如何评估和比较不同模型的性能。
2025-06-13 13:31:40 452KB 房价预测 机器学习 深度学习
1
基于深度学习混合模型的时序预测系统:CNN-LSTM-Attention回归模型在MATLAB环境下的实现与应用,基于多变量输入的CNN-LSTM-Attention混合模型的数据回归与预测系统,CNN-LSTM-Attention回归,基于卷积神经网络(CNN)-长短期记忆神经网络(LSTM)结合注意力机制(Attention)的数据回归预测,多变量输入单输入,可以更为时序预测,多变量 单变量都有 LSTM可根据需要更为BILSTM,GRU 程序已经调试好,无需更改代码替数据集即可运行数据格式为excel 、运行环境要求MATLAB版本为2020b及其以上 、评价指标包括:R2、MAE、MSE、RMSE等,图很多,符合您的需要 、代码中文注释清晰,质量极高 、测试数据集,可以直接运行源程序。 替你的数据即可用适合新手小白 、 注:保证源程序运行, ,核心关键词:CNN-LSTM-Attention; 回归预测; 多变量输入单输入; 时序预测; BILSTM; GRU; 程序调试; MATLAB 2020b以上; 评价指标(R2、MAE、MSE、RMSE); 代码中文注释清晰; 测试数
2025-04-24 22:28:38 3.4MB sass
1
机器学习实战教程,小项目
2025-03-22 17:06:42 66.09MB 机器学习 python
1
Python使用技巧,实战应用开发小系统参考资料,源码参考。经测试可运行。 详细介绍了一些Python框架的各种功能和模块,以及如何使用Python进行GUI开发、网络编程和跨平台应用开发等。 适用于初学者和有经验的开发者,能够帮助你快速上手JPython并掌握其高级特性。
2025-03-13 10:16:06 6.96MB python
1
软件基本功能: 1.历史数据获取 2.随机库生成 3.三级选号过滤 4.生成预测结果 5.模拟结果测试
2024-10-06 15:57:29 63.27MB pyqt5
1
<项目介绍> 基于Python+Django+PSO-LSTM电力负荷预测系统源码+文档说明 - 不懂运行,下载完可以私聊问,可远程教学 该资源内项目源码是个人的毕设,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 --------
2024-09-23 20:12:24 4.06MB python django 人工智能 lstm
1
Python天然气产气量预测系统源码Python天然气产气量预测系统源码Python天然气产气量预测系统源码Python天然气产气量预测系统源码Python天然气产气量预测系统源码Python天然气产气量预测系统源码Python天然气产气量预测系统源码Python天然气产气量预测系统源码Python天然气产气量预测系统源码Python天然气产气量预测系统源码Python天然气产气量预测系统源码Python天然气产气量预测系统源码Python天然气产气量预测系统源码Python天然气产气量预测系统源码Python天然气产气量预测系统源码Python天然气产气量预测系统源码Python天然气产气量预测系统源码
2024-08-29 17:06:02 163KB python
1
Java基于机器学习进行软件系统故障预测系统源码.zip
2024-06-27 09:37:26 216KB java
1