本文详细介绍了基于AH8669芯片的非隔离AC-DC转换电路设计,适用于220V转5V/600mA的工业级应用。文章首先分析了AH8669的核心参数,包括输入电压范围、输出电流能力、转换效率等,并强调了设计安全规范,如符合GB4943.1-2011标准、配置输入保险丝和输出端双重绝缘处理。接着,文章详细描述了电路拓扑和关键设计,包括输入保护电路、功率转换单元和反馈调节网络。此外,还提供了关键器件选型指南、散热设计、EMC优化措施以及实测性能数据。最后,文章明确了该方案的应用场景和不适用场合,并强调了量产前必须进行的高压绝缘测试、老化测试和EMC预认证测试。 AH8669芯片是一种用于非隔离AC-DC转换的电源管理集成电路,它能够将交流电(AC)转换为直流电(DC)。在工业级应用中,此类芯片常用于实现将家庭或工业标准的交流电压,比如220V,转换为特定的直流电压,如5V,并为负载提供稳定的电流输出,例如600mA。 在设计非隔离AC-DC转换电路时,AH8669芯片的核心参数需要特别关注。这些参数包括输入电压范围、输出电流能力和转换效率。设计者必须确保电路设计在这些参数范围内正常工作,并达到预期的性能指标。安全规范的遵守是设计过程中不可或缺的一环,这涉及到符合国际或地方安全标准,例如GB4943.1-2011标准。此外,设计中还需要加入输入保险丝和输出端的双重绝缘处理,以保障使用者的安全。 电路拓扑和关键设计部分涉及输入保护电路、功率转换单元和反馈调节网络。输入保护电路能够防止因输入电压不稳定或过高而损坏电路。功率转换单元是电路的核心部分,负责执行AC到DC的转换过程,并且必须精心设计以获得高效率和良好的热管理。反馈调节网络则是确保输出电压和电流保持恒定的关键,即使输入电压发生变化,输出也能保持稳定。 在器件选型方面,设计者需要考虑包括AH8669芯片在内的所有关键元件,确保它们的耐压、耐流等电气参数能够满足设计要求,并有良好的市场供应和技术支持。散热设计是为了确保电路在各种工作条件下不会过热,保护元件不受损害,同时也能提高系统的可靠性。 电磁兼容性(EMC)优化措施是确保产品在市场上顺利通过各种测试的关键。EMC设计不仅包括减少电路产生的电磁干扰(EMI),还要增强电路对外界电磁干扰的抵抗能力。文章提供的实测性能数据包括转换效率、输出电压和电流的稳定性等,为评估设计的有效性提供了直接证据。 在量产前,还需要进行高压绝缘测试、老化测试和EMC预认证测试。高压绝缘测试是为了检查产品的绝缘性能是否合格,确保在高电压环境下使用的安全性。老化测试则用来评估产品在长期工作状态下的性能稳定性。EMC预认证测试可以预测产品在正式的EMC测试中的表现,为后续的认证工作打下基础。 应用场景和不适用场合的明确划分对于设计者和使用者来说都是极其重要的。它帮助使用者正确选择合适的电源解决方案,并避免将该设计用在不适当的场合,从而避免可能的损害和风险。文章强调的所有这些测试和考虑,都是为了确保最终产品能够满足行业标准和用户的需求,为用户带来安全、可靠、高效的电源解决方案。
2025-12-19 20:57:07 5KB 软件开发 源码
1
内容概要:本文深入探讨了非隔离双向DC-DC Buck-Boost变换器的工作原理及其在Matlab/Simulink环境下的仿真建模方法。文中详细描述了变换器的主电路和控制电路设计,特别是采用了电压外环电流内环的双闭环控制方式来确保系统在不同工作状态下的稳定性。具体来说,在正向运行时,直流电压源可以为蓄电池提供恒流恒压充电;而在反向运行时,蓄电池能放电以维持直流侧电压稳定。通过一系列仿真实验,验证了所提模型的有效性和可靠性。 适合人群:对电力电子系统有兴趣的研究人员和技术爱好者,尤其是那些希望深入了解非隔离双向DC-DC变换器以及掌握Matlab/Simulink仿真技能的人士。 使用场景及目标:适用于需要评估或改进非隔离双向DC-DC变换器性能的研究项目;也可用于教学环境中帮助学生更好地理解相关理论知识并培养实际操作能力。 其他说明:文中提供的仿真模型不仅有助于理解变换器的基本运作机制,还为进一步探索其性能优化和控制策略奠定了坚实的基础。
2025-06-02 22:12:48 344KB
1
非隔离双向DC DC变换器 buck-boost变换器仿真 输入侧为直流电压源,输出侧接蓄电池 模型采用电压外环电流内环的双闭环控制方式 正向运行时电压源给电池恒流恒压充电,反向运行时电池放电维持直流侧电压稳定 matlab simulink仿真模型 ~
2024-04-08 16:50:46 179KB matlab
1
本文介绍在非隔离应用中将数字隔离器用作电平转换器,感兴趣的朋友可以看看。
2024-03-22 15:21:11 38KB 数字隔离器 电平转换器 技术应用
1
非隔离型开关电源一般有三种基本工作方式,降压型、升压型、极性反转型三种,而其他的都是这三种形式转换而来,例如反激式、正激式、推挽式、半桥式、全桥式。1、降压型电路如下图为降压型电路。在此电路中,脉宽调制(pwm)电路的输出加到晶体管开关Q1的基极,以控制其导通和截止。工作过程:①当开关导通时,输人量可以传递到输出端;②开关截止时,则被隔断。这种脉冲状的能量传递经变换和滤波形成平滑的电压输出。pwm电路将它的变化转变成能控制开关导通和截止时间之比的pwm信号,达到稳定的目的。 2、升压型电路如图是升压型电路。工作过程:①开关管Q1导通时,扼流圈L1储能。这时il=uin/lt(t为扼流圈导通时间)。设导通结束时的电流为il,因此,储能为e=0.5i2l。Q1截止后,il将从il开始减少,在L上感应出左低右高的自感电动势。这个电动势叠加在uin上,二者一起通过vd给电容器c充电并向负载供电,得到比输人电压高的输出电压。②Q1导通期间,电容器MC1单独向负载供电,这时,D1阳极电位低于阴极而处于截止状态,防止了电容反向放电。 3、极性反转型电路如下图为极性反转型电路,也叫倒置型电
1
内容:非隔离电源的原理图,包括了AD版本和PDF版本,亲测可用 介绍:基于LNK306DN非隔离 220V交流转直流低压的电路,零线即是GND; 具体电压可通过调整R31 R30的阻值进行修改,本电路输出5V; 阻值与输出电压的关系为Vout=1.65*(1+R31/R30)=1.65*(1+20/10)=4.95V
2023-04-06 22:50:02 52KB 嵌入式硬件 硬件设计 电源
1
无需变压器的低成本非隔离式ACDC降压转换器方案pdf,介绍几款采用非隔离AC-DC电源芯片XD308H (18-600V超宽范围输入)构成的降压电路,采用BUCK电路拓扑结构,常用于小家电控制板电源(220Vac输入)以及工业控制电源(380Vac输入)供电。其典型电路规格包含5V/500mA、12V/500mA和24V/500mA等,满足六级能效要求。可通过EFT、雷击、浪涌等可靠性测试,可通过3C、UL、CE等认证。其特点是:电路简单、BOM成本低(外围元件数目极少:无需变压器、光耦),电源体积小、无音频噪音、损耗小发热低。
2023-03-28 22:40:28 165KB 开关电源
1
H6拓扑能有效抑制共模电流,单极性发波方式能有效抑制共模电流
2023-03-05 15:56:20 1.05MB 光伏
1
基于非隔离型光伏并网逆变器的原理与控制策略,文中给出了3KW单相两级光伏并网逆变器的主电路的硬件设计方法与整个系统的仿真分析,并基于该设计方法研制了并网逆变器的样机,实测结果证明该并网逆变器工作正常,达到了预期目的。
2022-04-20 17:06:11 1.08MB 工程技术 论文
1