针对量测噪声模型为非高斯L´evy 噪声, 研究离散线性随机分数阶系统的卡尔曼滤波设计问题. 通过剔除极大值的方法得到近似高斯白噪声的L´evy 噪声, 基于最小二乘原理, 提出一种考虑非高斯L´evy 量测噪声下的改进分数阶卡尔曼滤波算法. 与传统的分数阶卡尔曼滤波相比, 改进的分数阶卡尔曼滤波对非高斯L´evy 噪声具有更好的滤波效果. 最后, 通过模拟仿真验证了所提出算法的正确性和有效性.
针对一个扫描周期内单个目标可能产生多个量测的问题, 提出一种基于标签随机有限集的扩展算法. 结合脉冲扩展标签多伯努利(-GLMB) 滤波器和多量测模型, 推导出新的更新方程; 采用假设分解策略对关联过程进行降维, 避免了量测分组过程. 实验分析表明: 所提出算法能对目标数进行无偏估计, 在低探测概率条件下跟踪性能明显优于多量测概率假设密度(MD-PHD) 算法; 计算开销在量测较少时高于MD-PHD, 量测个数增加时增幅低于MD-PHD.